#' Reference Point Based Non-Dominated Sorting in Genetic Algorithms II
#'
#' Minimization of a fitness function using reference point based non-dominated
#' sorting genetic algorithms - II (R-NSGA-IIs). Multiobjective evolutionary algorithms
#'
#' R-NSGA-II is a meta-heuristic proposed by K. Deb and J. Sundar in 2006.
#' It is a modification of NSGA-II based on reference points in which the
#' decision-maker supplies one or more preference points and a weight vector
#' that will guide the solutions towards regions desired by the user.
#'
#'
#' @param type the type of genetic algorithm to be run depending on the nature
#' of decision variables. Possible values are:
#' \describe{
#' \item{'binary'}{for binary representations of decision variables.}
#' \item{'real-valued'}{for optimization problems where the decision
#' variables are floating-point representations of real numbers.}
#' \item{'permutation'}{for problems that involves reordering of a list of
#' objects.}
#' }
#'
#' @param fitness the fitness function, any allowable R function which takes as
#' input an individual string representing a potential solution, and returns a
#' numerical value describing its 'fitness'.
#' @param ... additional arguments to be passed to the fitness function. This
#' allows to write fitness functions that keep some variables fixed during the
#' search
#' @param lower a vector of length equal to the decision variables providing the
#' lower bounds of the search space in case of real-valued or permutation
#' encoded optimizations.
#' @param upper a vector of length equal to the decision variables providing the
#' upper bounds of the search space in case of real-valued or permutation
#' encoded optimizations.
#' @param nBits a value specifying the number of bits to be used in binary
#' encoded optimizations
#' @param population an R function for randomly generating an initial population.
#' See [rmoo_Population()] for available functions.
#' @param selection an R function performing selection, i.e. a function which
#' generates a new population of individuals from the current population
#' probabilistically according to individual fitness. See [rmoo_Selection()]
#' for available functions.
#' @param crossover an R function performing crossover, i.e. a function which
#' forms offsprings by combining part of the genetic information from their
#' parents. See [rmoo_Crossover()] for available functions.
#' @param mutation an R function performing mutation, i.e. a function which
#' randomly alters the values of some genes in a parent chromosome.
#' See [rmoo_Mutation()] for available functions.
#' @param reference_dirs Function to generate reference points using Das and
#' Dennis approach or matrix with supplied reference points.
#' @param epsilon controls the extent of obtained solutions by grouping all
#' solutions that have a normalized difference sum in objective values of epsilon or less.
#' @param normalization of the ideal points and nadir. They can be:
#' \describe{
#' \item{'ever'}{.}
#' \item{'front'}{.}
#' \item{'no'}{.}
#' }
#'
#' @param extreme_points_as_ref_dirs flag to use extreme points as reference points.
#' @param weights vector specifies the importance of one objective function over
#' the other, by default all objectives have equal weights.
#' @param popSize the population size.
#' @param nObj number of objective in the fitness function.
#' @param pcrossover the probability of crossover between pairs of chromosomes.
#' Typically this is a large value and by default is set to 0.8.
#' @param pmutation the probability of mutation in a parent chromosome. Usually
#' mutation occurs with a small probability, and by default is set to 0.1.
#' @param maxiter the maximum number of iterations to run before the NSGA search
#' is halted.
#' @param run the number of consecutive generations without any improvement in
#' the best fitness value before the NSGA is stopped
#' @param maxFitness the upper bound on the fitness function after that the NSGA
#' search is interrupted.
#' @param names a vector of character strings providing the names of decision
#' variables.
#' @param suggestions a matrix of solutions strings to be included in the
#' initial population. If provided the number of columns must match the number
#' of decision variables.
#' @param parallel An optional argument which allows to specify if the NSGA-II
#' should be run sequentially or in parallel.
#' @param monitor a logical or an R function which takes as input the current
#' state of the nsga-class object and show the evolution of the search. By
#' default, for interactive sessions the function rmooMonitor prints the average
#' and best fitness values at each iteration. If set to plot these information
#' are plotted on a graphical device. Other functions can be written by the user
#' and supplied as argument. In non interactive sessions, by default
#' monitor = FALSE so any output is suppressed.
#' @param summary If there will be a summary generation after generation.
#' @param seed an integer value containing the random number generator state.
#' This argument can be used to replicate the results of a NSGA search. Note
#' that if parallel computing is required, the doRNG package must be installed.
#'
#' @author Francisco Benitez
#' \email{benitezfj94@gmail.com}
#'
#' @references Kalyanmoy Deb and J. Sundar. 2006. Reference point based
#' multi-objective optimization using evolutionary algorithms. In Proceedings of
#' the 8th annual conference on Genetic and evolutionary computation (GECCO '06).
#' Association for Computing Machinery, New York, NY, USA, 635–642.
#' doi: 10.1145/1143997.1144112
#'
#' @seealso [nsga()], [nsga2()], [nsga3()]
#'
#' @return Returns an object of class rnsga2-class. See [rnsga2-class] for a
#' description of available slots information.
#'
#' @examples
#' #Example
#' #Two Objectives - Real Valued
#' zdt1 <- function (x) {
#' if (is.null(dim(x))) {
#' x <- matrix(x, nrow = 1)
#' }
#' n <- ncol(x)
#' g <- 1 + rowSums(x[, 2:n, drop = FALSE]) * 9/(n - 1)
#' return(cbind(x[, 1], g * (1 - sqrt(x[, 1]/g))))
#' }
#'
#' #Define the reference points
#' reference_points = rbind(c(0.2, 0.8), c(0.8, 0.2), c(0.4, 0.5))
#'
#' #Not run:
#' \dontrun{
#' result <- rnsga2(type = "real-valued",
#' fitness = zdt1,
#' lower = c(0,0),
#' upper = c(1,1),
#' reference_dirs = reference_points,
#' popSize = 100,
#' nObj = 2,
#' monitor = FALSE,
#' maxiter = 500,
#' seed = 45)
#' }
#'
#' #Example 2
#' #Three Objectives - Real Valued
#' dtlz1 <- function (x, nobj = 3){
#' if (is.null(dim(x))) {
#' x <- matrix(x, 1)
#' }
#' n <- ncol(x)
#' y <- matrix(x[, 1:(nobj - 1)], nrow(x))
#' z <- matrix(x[, nobj:n], nrow(x))
#' g <- 100 * (n - nobj + 1 + rowSums((z - 0.5)^2 - cos(20 * pi * (z - 0.5))))
#' tmp <- t(apply(y, 1, cumprod))
#' tmp <- cbind(t(apply(tmp, 1, rev)), 1)
#' tmp2 <- cbind(1, t(apply(1 - y, 1, rev)))
#' f <- tmp * tmp2 * 0.5 * (1 + g)
#' return(f)
#' }
#'
#' #Define the reference points
#' reference_points <- rbind(c(1.0, 0.5, 0.0), c(0.0, 0.5, 1.0), c(0.5, 0.5, 0.5))
#'
#' #Not run:
#' \dontrun{
#' result <- rnsga2(type = "real-valued",
#' fitness = dtlz1,
#' lower = c(0,0,0),
#' upper = c(1,1,1),
#' reference_dirs = reference_points,
#' popSize = 92,
#' nObj = 3,
#' monitor = FALSE,
#' maxiter = 500)
#' }
#'
#' @export
rnsga2 <- function(type = c("binary", "real-valued", "permutation"),
fitness, ...,
lower, upper, nBits,
population = rmooControl(type)$population,
selection = rmooControl(type)$selection,
crossover = rmooControl(type)$crossover,
mutation = rmooControl(type)$mutation,
reference_dirs = NULL,
epsilon = 0.001,
normalization = c("ever", "front", "no"),
extreme_points_as_ref_dirs = FALSE,
weights = NULL,
popSize = 50,
nObj = NULL,
pcrossover = 0.8,
pmutation = 0.1,
maxiter = 100,
run = maxiter,
maxFitness = Inf,
names = NULL,
suggestions = NULL,
parallel = FALSE,
monitor = if (interactive()) rmooMonitor else FALSE,
summary = FALSE,
seed = NULL)
{
call <- match.call()
type <- match.arg(type, choices = eval(formals(rnsga2)$type))
normalization <- match.arg(normalization, choices = eval(formals(rnsga2)$normalization))
callArgs <- list(...)
callArgs$strategy <- NULL
if (!is.function(population))
population <- get(population)
if (!is.function(selection))
selection <- get(selection)
if (!is.function(crossover))
crossover <- get(crossover)
if (!is.function(mutation))
mutation <- get(mutation)
if (is.null(nObj)) {
stop("Please, define the objective number (nObj)")
} else {
if (!is.numeric(nObj) | (nObj%%1!=0)) {
stop("Objective number (nObj) is a character or is not an integer.")
}
}
if (is.null(reference_dirs)) {
stop("Please, define the reference points (reference_dirs)")
} else {
if ((ncol(reference_dirs) != nObj) & !is.matrix(reference_dirs)) {
stop("The provided reference points must be a matrix and have the same
columns as objective number function")
}
}
if (missing(fitness)) {
stop("A fitness function must be provided")
}
if (!is.function(fitness)) {
stop("A fitness function must be provided")
}
if (popSize < 10) {
warning("The population size is less than 10.")
}
if (maxiter < 1) {
stop("The maximum number of iterations must be at least 1.")
}
if (pcrossover < 0 | pcrossover > 1) {
stop("Probability of crossover must be between 0 and 1.")
}
if (is.numeric(pmutation)) {
if (pmutation < 0 | pmutation > 1) {
stop("If numeric probability of mutation must be between 0 and 1.")
} else if (!is.function(population)) {
stop("pmutation must be a numeric value in (0,1) or a function.")
}
}
if (missing(lower) & missing(upper) & missing(nBits)) {
stop("A lower and upper range of values (for 'real-valued' or 'permutation') or nBits (for 'binary') must be provided!")
}
# if (is.null(nObj)) {
# nObj <- ncol(fitness(matrix(10000, ncol = 100, nrow = 100)))
# }
switch(type, binary = {
nBits <- as.vector(nBits)[1]
lower <- upper <- NA
nvars <- nBits
if (is.null(names)) names <- paste0("x", 1:nvars)
}, `real-valued` = {
lnames <- names(lower)
unames <- names(upper)
lower <- as.vector(lower)
upper <- as.vector(upper)
nBits <- NA
if (length(lower) != length(upper))
stop("lower and upper must be vector of the same length")
nvars <- length(upper)
if (is.null(names) & !is.null(lnames)) names <- lnames
if (is.null(names) & !is.null(unames)) names <- unames
if (is.null(names))
names <- paste0("x", 1:nvars)
}, permutation = {
lower <- as.vector(lower)[1]
upper <- as.vector(upper)[1]
nBits <- NA
nvars <- length(seq.int(lower, upper))
if (is.null(names))
names <- paste0("x", 1:nvars)
})
if (is.null(suggestions)) {
suggestions <- matrix(nrow = 0, ncol = nvars)
} else {
if (is.vector(suggestions)) {
if (nvars > 1)
suggestions <- matrix(suggestions, nrow = 1)
else
suggestions <- matrix(suggestions, ncol = 1)
} else {
suggestions <- as.matrix(suggestions)
}
if (nvars != ncol(suggestions))
stop("Provided suggestions (ncol) matrix do not match number of variables of the problem")
}
# check monitor arg
if (is.logical(monitor)) {
if (monitor)
monitor <- rmooMonitor
}
if (is.null(monitor))
monitor <- FALSE
# Start parallel computing (if needed)
if(is.logical(parallel)){
if(parallel) {
parallel <- startParallel(parallel)
stopCluster <- TRUE
} else {
parallel <- stopCluster <- FALSE
}
}else {
stopCluster <- if(inherits(parallel, "cluster")) FALSE else TRUE
parallel <- startParallel(parallel)
}
on.exit(if(parallel & stopCluster)
stopParallel(attr(parallel, "cluster")))
# define operator to use depending on parallel being TRUE or FALSE
`%DO%` <- if(parallel && requireNamespace("doRNG", quietly = TRUE)){
doRNG::`%dorng%` } else if (parallel){ foreach::`%dopar%` } else { foreach::`%do%` }
# set seed for reproducibility
if (!is.null(seed))
set.seed(seed)
i. <- NULL #dummy to trick R CMD check
Fitness <- matrix(NA, nrow = popSize, ncol = nObj)
fitnessSummary <- vector("list", maxiter)
# Creacion del objetivo tipo nsga
object <- new("rnsga2",
call = call,
type = type,
lower = lower,
upper = upper,
nBits = nBits,
names = if (is.null(names))
character()
else names,
popSize = popSize,
front = matrix(),
f = list(),
iter = 0,
run = 1,
maxiter = maxiter,
suggestions = suggestions,
population = matrix(),
pcrossover = pcrossover,
pmutation = if (is.numeric(pmutation))
pmutation
else NA,
crowdingDistance = c(),
fitness = Fitness,
reference_points = reference_dirs,
extreme_points = matrix(),
smin = rep(NA, nObj),
summary = fitnessSummary)
# Generate initial population
if (maxiter == 0)
return(object)
p_fit <- q_fit <- matrix(NA_real_, nrow = popSize, ncol = nObj)
switch(type,
binary = {
Pop <- P <- Q <- matrix(NA_real_, nrow = popSize, ncol = nBits)
},
`real-valued` = {
Pop <- P <- Q <- matrix(NA_real_, nrow = popSize, ncol = nvars)
},
permutation = {
Pop <- P <- Q <- matrix(NA_real_, nrow = popSize, ncol = nvars)
}
)
ng <- min(nrow(suggestions), popSize)
if (ng > 0) {
Pop[1:ng, ] <- suggestions
}
if (popSize > ng) {
Pop[(ng + 1):popSize, ] <- population(object)[1:(popSize - ng), ]
}
object@population <- Pop
if(!parallel) {
for (i in seq_len(popSize)) {
if (is.na(Fitness[i])) {
fit <- do.call(fitness, c(list(Pop[i, ]), callArgs))
Fitness[i, ] <- fit
}
}
} else {
Fitness <- foreach(i. = seq_len(popSize), .combine = "rbind") %DO%
{ if(is.na(Fitness[i.]))
do.call(fitness, c(list(Pop[i.,]), callArgs))
else
Fitness[i.,]
}
}
object@population <- P <- Pop
object@fitness <- p_fit <- Fitness
#First Non-dominated Ranking
out <- non_dominated_fronts(object)
object@f <- out$fit
object@front <- matrix(unlist(out$fronts), ncol = 1, byrow = TRUE)
# object@crowdingDistance <- c() Crowding measure with the smallest distance to reference points
for (iter in seq_len(maxiter)) {
object@iter <- iter
#Selection Operator
if (is.function(selection)) {
sel <- selection(object, nObj)
Pop <- sel$population
Fitness <- sel$fitness
} else {
sel <- sample(1:popSize, size = popSize, replace = TRUE)
Pop <- object@population[sel, ]
Fitness <- object@fitness[sel, ]
}
object@population <- Pop
object@fitness <- Fitness
# Cross Operator
if (is.function(crossover) & pcrossover > 0) {
nmating <- floor(popSize / 2)
mating <- matrix(sample(1:(2 * nmating), size = (2 * nmating)), ncol = 2)
for (i in seq_len(nmating)) {
if (pcrossover > runif(1)) {
parents <- mating[i, ]
Crossover <- crossover(object, parents)
Pop[parents, ] <- Crossover$children
Fitness[parents, ] <- Crossover$fitness
}
}
}
object@population <- Pop
object@fitness <- Fitness
#Mutation Operator
pm <- if (is.function(pmutation)) {
pmutation(object)
} else {pmutation}
if (is.function(mutation) & pm > 0) {
for (i in seq_len(popSize)) {
if (pm > runif(1)) {
Mutation <- mutation(object, i)
Pop[i, ] <- Mutation
Fitness[i, ] <- NA
}
}
}
object@population <- Q <- Pop
object@fitness <- q_fit <- Fitness
#Evaluate Fitness
if(!parallel) {
for (i in seq_len(popSize)) {
if (is.na(Fitness[i])) {
fit <- do.call(fitness, c(list(Pop[i, ]), callArgs))
Fitness[i, ] <- fit
}
}
} else {
Fitness <- foreach(i. = seq_len(popSize), .combine = "rbind") %DO%
{ if(is.na(Fitness[i.]))
do.call(fitness, c(list(Pop[i.,]), callArgs))
else
Fitness[i.,]
}
}
object@population <- Q <- Pop
object@fitness <- q_fit <- Fitness
#R = P U Q
object@population <- Pop <- rbind(P, Q)
object@fitness <- rbind(p_fit, q_fit)
out <- non_dominated_fronts(object)
object@f <- out$fit
object@front <- matrix(unlist(out$fronts), ncol = 1, byrow = TRUE)
#R-NSGA-II Operator
cd <- modifiedCrowdingDistance(object, epsilon, weights, normalization, extreme_points_as_ref_dirs)
object@crowdingDistance <- cd$survivors
object@reference_points <- cd$reference_points
object@smin <- cd$indexmin
rm(cd)
# Sorted population and fitness by front and crowding distance
populationsorted <- object@population[object@crowdingDistance, ]
fitnesssorted <- object@fitness[object@crowdingDistance, ]
# Select de first N element
object@population <- P <- Pop <- populationsorted
object@fitness <- p_fit <- fitnesssorted
out <- non_dominated_fronts(object)
object@f <- out$fit
object@front <- matrix(unlist(out$fronts), ncol = 1, byrow = TRUE)
# ------------------------------------------------------------------------
if (summary == TRUE) {
fitnessSummary[[iter]] <- progress(object, callArgs)
object@summary <- fitnessSummary
} else {
object@summary <- list(NULL)
}
# Plot front non-dominated by iteration
if (is.function(monitor)) {
monitor(object = object, callArgs)
# monitor(object = object, number_objective = nObj)
}
if (max(Fitness, na.rm = TRUE) >= maxFitness)
break
if (object@iter == maxiter)
break
}
solution <- object
return(solution)
}
## R-NSGA-II Bare Process
# @export
r_nsga_ii <- function(object, epsilon, weights, normalization, extreme_points_as_ref_dirs) {
cd <- modifiedCrowdingDistance(object, epsilon, weights, normalization, extreme_points_as_ref_dirs)
object@crowdingDistance <- cd$survivors
object@population <- P <- Pop <- object@population[object@crowdingDistance, ]
object@fitness <- p_fit <- object@fitness[object@crowdingDistance, ]
out <- non_dominated_fronts(object)
object@f <- out$fit
object@front <- matrix(unlist(out$fronts), ncol = 1, byrow = TRUE)
cd <- modifiedCrowdingDistance(object, epsilon, weights, normalization, extreme_points_as_ref_dirs)
object@crowdingDistance <- cd$survivors
out <- list(object = object,
p_pop = Pop,
p_fit = p_fit)
return(out)
}
# @export
# @rdname progress-methods
# @aliases progress,rnsga2-method
#setMethod("progress", "rnsga2", .rnsga2.progress)
# @export
#' @rdname plot-methods
#' @aliases plot,rnsga2-method
setMethod("plot", signature(x="rnsga2", y="missing"), .get.plotting)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.