R/GSEA.Analyze.Sets.R

Defines functions GSEA.Analyze.Sets

Documented in GSEA.Analyze.Sets

#' Performs leading edge analysis of a GSEA result
#'
#' `GSEA.Analyze.Sets` returns leading edge plots and gcts extracted from a GSEA result folder
#'
#' This function is designed to be invoked immediately after `GSEA` to run leading edge analysis. 

#' @param directory The directory containing GSEA result files 
#' @param topgs Number of gene sets from GSEA output used for leading edge analysis (default: 20)
#' @param height height dimension for leading edge analysis plots
#' @param width width dimension for leading edge analysis plots
#' @param gsea.type the gsea run type (either 'GSEA' or 'preranked')
#' @param doc.string the file prefixed in the original analysis (typically user defined)
#'
#' @return Leading edge analysis plots and GCT files containing the leading edge subsets for each class
#'
#' @examples
#' \dontrun{GSEA.Analyze.Sets(doc.string = "gsea_result")}
#'
#' @export
GSEA.Analyze.Sets <- function(directory = getwd(), topgs = 20, height = 16, width = 16, 
 gsea.type = "GSEA", doc.string = "gsea_result") {
 
 file.list <- list.files(directory)
 
 if (.Platform$OS.type == "unix") {
  directory <- paste0(directory, .Platform$file.sep)
 }
 if (.Platform$OS.type == "windows") {
  directory <- paste0(directory, .Platform$file.sep)
 }
 
 file.reports <- file.list[regexpr(pattern = ".report.", file.list) > 1]
 files <- file.reports[grep(doc.string, file.reports)]
 
 max.sets <- length(files)
 
 set.table <- matrix(nrow = max.sets, ncol = 5)
 
 for (i in 1:max.sets) {
  temp1 <- strsplit(files[i], split = ".report.")
  temp2 <- strsplit(temp1[[1]][1], split = "\\.")
  s <- length(temp2[[1]])
  prefix.name <- paste(temp2[[1]][1:(s - 1)], sep = "", collapse = "")
  set.name <- temp2[[1]][s]
  temp3 <- strsplit(temp1[[1]][2], split = "\\.")
  phenotype <- temp3[[1]][1]
  seq.number <- temp3[[1]][2]
  dataset <- paste(temp2[[1]][1:(s - 1)], sep = "", collapse = ".")
  
  set.table[i, 1] <- files[i]
  
  set.table[i, 3] <- phenotype
  set.table[i, 4] <- as.numeric(seq.number)
  set.table[i, 5] <- dataset
  
  # set.table[i, 2] <- paste(set.name, dataset, sep ='', collapse='')
  set.table[i, 2] <- set.name
 }
 
 print(c("set name=", prefix.name))
 doc.string <- prefix.name
 
 set.table <- noquote(set.table)
 phen.order <- order(set.table[, 3], decreasing = T)
 set.table <- set.table[phen.order, ]
 if (gsea.type == "GSEA") {
  phen1 <- names(table(set.table[, 3]))[1]
  phen2 <- names(table(set.table[, 3]))[2]
 } else if (gsea.type == "preranked") {
  phen1 <- "NA_pos"
  phen2 <- "NA_neg"
 }
 set.table.phen1 <- set.table[set.table[, 3] == phen1, ]
 set.table.phen2 <- set.table[set.table[, 3] == phen2, ]
 
 seq.order <- order(as.numeric(set.table.phen1[, 4]), decreasing = F)
 set.table.phen1 <- set.table.phen1[seq.order, ]
 seq.order <- order(as.numeric(set.table.phen2[, 4]), decreasing = F)
 set.table.phen2 <- set.table.phen2[seq.order, ]
 
 # max.sets.phen1 <- length(set.table.phen1[,1]) max.sets.phen2 <-
 # length(set.table.phen2[,1])
 
 if (topgs == "") {
  max.sets.phen1 <- length(set.table.phen1[, 1])
  max.sets.phen2 <- length(set.table.phen2[, 1])
 } else {
  max.sets.phen1 <- ifelse(topgs > length(set.table.phen1[, 1]), length(set.table.phen1[, 
   1]), topgs)
  max.sets.phen2 <- ifelse(topgs > length(set.table.phen2[, 1]), length(set.table.phen2[, 
   1]), topgs)
 }
 
 # Analysis for phen1
 
 leading.lists <- NULL
 for (i in 1:max.sets.phen1) {
  inputfile <- paste(directory, set.table.phen1[i, 1], sep = "", collapse = "")
  gene.set <- read.table(file = inputfile, sep = "\t", header = T, comment.char = "", 
   as.is = T, quote = "", fill = TRUE)
  leading.set <- as.vector(gene.set[gene.set[, "CORE_ENRICHMENT"] == "YES", 
   "GENE.SYMBOL"])
  leading.lists <- c(leading.lists, list(leading.set))
  if (i == 1) {
   all.leading.genes <- leading.set
  } else {
   all.leading.genes <- union(all.leading.genes, leading.set)
  }
 }
 max.genes <- length(all.leading.genes)
 M <- matrix(0, nrow = max.sets.phen1, ncol = max.genes)
 for (i in 1:max.sets.phen1) {
  M[i, ] <- sign(match(all.leading.genes, as.vector(leading.lists[[i]]), nomatch = 0))  # notice that the sign is 0 (no tag) or 1 (tag)
 }
 
 Inter <- matrix(0, nrow = max.sets.phen1, ncol = max.sets.phen1)
 for (i in 1:max.sets.phen1) {
  for (j in 1:max.sets.phen1) {
   Inter[i, j] <- length(intersect(leading.lists[[i]], leading.lists[[j]]))/length(union(leading.lists[[i]], 
    leading.lists[[j]]))
  }
 }
 
 Itable <- data.frame(Inter)
 names(Itable) <- set.table.phen1[1:max.sets.phen1, 2]
 row.names(Itable) <- set.table.phen1[1:max.sets.phen1, 2]
 
 filename <- paste(directory, doc.string, ".leading.overlap.", phen1, ".pdf", 
  sep = "", collapse = "")
 pdf(file = filename, height = width, width = width)
 
 
 GSEA.ConsPlot(Itable, col.names = set.table.phen1[1:max.sets.phen1, 2], main = " ", 
  sub = paste("Leading Subsets Overlap ", doc.string, " - ", phen1, sep = ""), 
  xlab = " ", ylab = " ")
 
 dev.off()
 
 
 # Save leading subsets in a GCT file
 
 D.phen1 <- data.frame(M)
 names(D.phen1) <- all.leading.genes
 row.names(D.phen1) <- set.table.phen1[1:max.sets.phen1, 2]
 output <- paste(directory, doc.string, ".leading.genes.", phen1, ".gct", sep = "")
 GSEA.write.gct(D.phen1, filename = output)
 
 # Save leading subsets as a single gene set in a .gmt file
 
 row.header <- paste(doc.string, ".all.leading.genes.", phen1, sep = "")
 output.line <- paste(all.leading.genes, sep = "\t", collapse = "\t")
 output.line <- paste(row.header, row.header, output.line, sep = "\t", collapse = "")
 output <- paste(directory, doc.string, ".all.leading.genes.", phen1, ".gmt", 
  sep = "")
 write(noquote(output.line), file = output, ncolumns = length(output.line))
 
 filename <- paste(directory, doc.string, ".leading.assignment.", phen1, ".pdf", 
  sep = "", collapse = "")
 pdf(file = filename, height = height, width = width)
 
 
 cmap <- c("#AAAAFF", "#111166")
 GSEA.HeatMapPlot2(V = data.matrix(D.phen1), row.names = row.names(D.phen1), col.names = names(D.phen1), 
  main = "Leading Subsets Assignment", sub = paste(doc.string, " - ", phen1, 
   sep = ""), xlab = " ", ylab = " ", color.map = cmap)
 
 dev.off()
 
 
 DT1.phen1 <- data.matrix(t(D.phen1))
 DT2.phen1 <- data.frame(DT1.phen1)
 names(DT2.phen1) <- set.table.phen1[1:max.sets.phen1, 2]
 row.names(DT2.phen1) <- all.leading.genes
 # GSEA.write.gct(DT2.phen1, filename=outputfile2.phen1)
 
 # Analysis for phen2
 
 leading.lists <- NULL
 for (i in 1:max.sets.phen2) {
  inputfile <- paste(directory, set.table.phen2[i, 1], sep = "", collapse = "")
  gene.set <- read.table(file = inputfile, sep = "\t", header = T, comment.char = "", 
   as.is = T, quote = "", fill = TRUE)
  leading.set <- as.vector(gene.set[gene.set[, "CORE_ENRICHMENT"] == "YES", 
   "GENE.SYMBOL"])
  leading.lists <- c(leading.lists, list(leading.set))
  if (i == 1) {
   all.leading.genes <- leading.set
  } else {
   all.leading.genes <- union(all.leading.genes, leading.set)
  }
 }
 max.genes <- length(all.leading.genes)
 M <- matrix(0, nrow = max.sets.phen2, ncol = max.genes)
 for (i in 1:max.sets.phen2) {
  M[i, ] <- sign(match(all.leading.genes, as.vector(leading.lists[[i]]), nomatch = 0))  # notice that the sign is 0 (no tag) or 1 (tag)
 }
 
 Inter <- matrix(0, nrow = max.sets.phen2, ncol = max.sets.phen2)
 for (i in 1:max.sets.phen2) {
  for (j in 1:max.sets.phen2) {
   Inter[i, j] <- length(intersect(leading.lists[[i]], leading.lists[[j]]))/length(union(leading.lists[[i]], 
    leading.lists[[j]]))
  }
 }
 
 Itable <- data.frame(Inter)
 names(Itable) <- set.table.phen2[1:max.sets.phen2, 2]
 row.names(Itable) <- set.table.phen2[1:max.sets.phen2, 2]
 
 filename <- paste(directory, doc.string, ".leading.overlap.", phen2, ".pdf", 
  sep = "", collapse = "")
 pdf(file = filename, height = width, width = width)
 
 
 GSEA.ConsPlot(Itable, col.names = set.table.phen2[1:max.sets.phen2, 2], main = " ", 
  sub = paste("Leading Subsets Overlap ", doc.string, " - ", phen2, sep = ""), 
  xlab = " ", ylab = " ")
 
 dev.off()
 
 # Save leading subsets in a GCT file
 
 D.phen2 <- data.frame(M)
 names(D.phen2) <- all.leading.genes
 row.names(D.phen2) <- set.table.phen2[1:max.sets.phen2, 2]
 output <- paste(directory, doc.string, ".leading.genes.", phen2, ".gct", sep = "")
 GSEA.write.gct(D.phen2, filename = output)
 
 # Save primary subsets as a single gene set in a .gmt file
 
 row.header <- paste(doc.string, ".all.leading.genes.", phen2, sep = "")
 output.line <- paste(all.leading.genes, sep = "\t", collapse = "\t")
 output.line <- paste(row.header, row.header, output.line, sep = "\t", collapse = "")
 output <- paste(directory, doc.string, ".all.leading.genes.", phen2, ".gmt", 
  sep = "")
 write(noquote(output.line), file = output, ncolumns = length(output.line))
 
 filename <- paste(directory, doc.string, ".leading.assignment.", phen2, ".pdf", 
  sep = "", collapse = "")
 pdf(file = filename, height = height, width = width)
 
 
 cmap <- c("#AAAAFF", "#111166")
 GSEA.HeatMapPlot2(V = data.matrix(D.phen2), row.names = row.names(D.phen2), col.names = names(D.phen2), 
  main = "Leading Subsets Assignment", sub = paste(doc.string, " - ", phen2, 
   sep = ""), xlab = " ", ylab = " ", color.map = cmap)
 
 dev.off()
 
 
 DT1.phen2 <- data.matrix(t(D.phen2))
 DT2.phen2 <- data.frame(DT1.phen2)
 names(DT2.phen2) <- set.table.phen2[1:max.sets.phen2, 2]
 row.names(DT2.phen2) <- all.leading.genes
 # GSEA.write.gct(DT2.phen2, filename=outputfile2.phen2)
 
 # Resort columns and rows for phen1
 
 A <- data.matrix(D.phen1)
 A.row.names <- row.names(D.phen1)
 A.names <- names(D.phen1)
 
 # Max.genes
 
 # init <- 1 for (k in 1:max.sets.phen1) { end <- which.max(cumsum(A[k,])) if (end
 # - init > 1) { B <- A[,init:end] B.names <- A.names[init:end] dist.matrix <-
 # dist(t(B)) HC <- hclust(dist.matrix, method='average') B <- B[,HC$order] +
 # 0.2*(k %% 2) B <- B[,HC$order] A[,init:end] <- B A.names[init:end] <-
 # B.names[HC$order] init <- end + 1 } }
 
 # windows(width=14, height=10) GSEA.HeatMapPlot2(V = A, row.names = A.row.names,
 # col.names = A.names, sub = ' ', main = paste('Primary Sets Assignment - ',
 # doc.string, ' - ', phen1, sep=''), xlab=' ', ylab=' ')
 
 dist.matrix <- dist(t(A))
 HC <- hclust(dist.matrix, method = "average")
 A <- A[, HC$order]
 A.names <- A.names[HC$order]
 
 dist.matrix <- dist(A)
 HC <- hclust(dist.matrix, method = "average")
 A <- A[HC$order, ]
 A.row.names <- A.row.names[HC$order]
 
 filename <- paste(directory, doc.string, ".leading.assignment.clustered.", phen1, 
  ".pdf", sep = "", collapse = "")
 pdf(file = filename, height = height, width = width)
 
 cmap <- c("#AAAAFF", "#111166")
 # GSEA.HeatMapPlot2(V = A, row.names = A.row.names, col.names = A.names, main =
 # 'Leading Subsets Assignment (clustered)', sub = paste(doc.string, ' - ', phen1,
 # sep=''), xlab=' ', ylab=' ', color.map = cmap)
 
 GSEA.HeatMapPlot2(V = A, row.names = A.row.names, col.names = A.names, main = "Leading Subsets Assignment (clustered)", 
  sub = paste(doc.string, " - ", phen1, sep = ""), xlab = " ", ylab = " ", 
  color.map = cmap)
 
 text.filename <- paste(directory, doc.string, ".leading.assignment.clustered.", 
  phen1, ".txt", sep = "", collapse = "")
 line.list <- c("Gene", A.row.names)
 line.header <- paste(line.list, collapse = "\t")
 line.length <- length(A.row.names) + 1
 write(line.header, file = text.filename, ncolumns = line.length)
 write.table(t(A), file = text.filename, append = T, quote = F, col.names = F, 
  row.names = T, sep = "\t")
 
 dev.off()
 
 
 # resort columns and rows for phen2
 
 A <- data.matrix(D.phen2)
 A.row.names <- row.names(D.phen2)
 A.names <- names(D.phen2)
 
 # Max.genes
 
 # init <- 1 for (k in 1:max.sets.phen2) { end <- which.max(cumsum(A[k,])) if (end
 # - init > 1) { B <- A[,init:end] B.names <- A.names[init:end] dist.matrix <-
 # dist(t(B)) HC <- hclust(dist.matrix, method='average') B <- B[,HC$order] +
 # 0.2*(k %% 2) B <- B[,HC$order] A[,init:end] <- B A.names[init:end] <-
 # B.names[HC$order] init <- end + 1 } }
 
 # windows(width=14, height=10) GESA.HeatMapPlot2(V = A, row.names = A.row.names,
 # col.names = A.names, sub = ' ', main = paste('Primary Sets Assignment - ',
 # doc.string, ' - ', phen2, sep=''), xlab=' ', ylab=' ')
 
 dist.matrix <- dist(t(A))
 HC <- hclust(dist.matrix, method = "average")
 A <- A[, HC$order]
 A.names <- A.names[HC$order]
 
 dist.matrix <- dist(A)
 HC <- hclust(dist.matrix, method = "average")
 A <- A[HC$order, ]
 A.row.names <- A.row.names[HC$order]
 
 filename <- paste(directory, doc.string, ".leading.assignment.clustered.", phen2, 
  ".pdf", sep = "", collapse = "")
 pdf(file = filename, height = height, width = width)
 
 cmap <- c("#AAAAFF", "#111166")
 
 # GSEA.HeatMapPlot2(V = A, row.names = A.row.names, col.names = A.names, main =
 # 'Leading Subsets Assignment (clustered)', sub = paste(doc.string, ' - ', phen2,
 # sep=''), xlab=' ', ylab=' ', color.map = cmap)
 GSEA.HeatMapPlot2(V = A, row.names = A.row.names, col.names = A.names, main = "Leading Subsets Assignment (clustered)", 
  sub = paste(doc.string, " - ", phen2, sep = ""), xlab = " ", ylab = " ", 
  color.map = cmap)
 
 text.filename <- paste(directory, doc.string, ".leading.assignment.clustered.", 
  phen2, ".txt", sep = "", collapse = "")
 line.list <- c("Gene", A.row.names)
 line.header <- paste(line.list, collapse = "\t")
 line.length <- length(A.row.names) + 1
 write(line.header, file = text.filename, ncolumns = line.length)
 write.table(t(A), file = text.filename, append = T, quote = F, col.names = F, 
  row.names = T, sep = "\t")
 
 dev.off()
 
 
}
GSEA-MSigDB/GSEA_R documentation built on Nov. 30, 2021, 4:50 a.m.