context("Test basic example")
library(future.batchtools)
#plan(sequential)
plan(multicore, workers = availableCores() - 1)
##system("rm -r tests/testthat/FAMoS-Results")
system("rm -r FAMoS-Results")
inits <- c(p1 = 3, p2 = 4, p3 = -2, p4 = 2, p5 = 1)
#create data with standard deviation of 1
x.values <- 1:7
y.values <- 9 * x.values^2 - exp(2 * x.values)
sd.y.values <- rep(1,7)
#define initial parameter values
inits <- c(p1 = 3, p2 = 4, p3 = -2, p4 = 2, p5 = 0)
#define cost function that returns the negative log-likelihood
cost_function <- function(parms, x.vals, y.vals, sd.y){
# restrict the search range to -5 to +5
if(max(abs(parms)) > 5){
return(NA)
}
with(as.list(c(parms)), {
res <- p1*4 + p2*x.vals + p3^2*x.vals^2 + p4*sin(x.vals) - exp(p5*x.vals)
diff <- sum((res - y.vals)^2/sd.y)
})
}
swaps <- list(c("p1", "p2"), c("p4", "p5"))
ran.bord <- rep(0.1, length(inits))
ran.bord <- cbind(rep(-5, length(inits)), rep(5, length(inits)))
dont.fit <- c("p1")
#perform model selection
res <- famos(init.par = inits,
fit.fn = cost_function,
nr.of.data = length(y.values),
homedir = getwd(),
refit = TRUE,
init.model.type = c("p1", "p3"),
optim.runs = 1,
use.futures = FALSE,
parscale.pars = FALSE,
random.borders = ran.bord,
#do.not.fit = dont.fit,
x.vals = x.values,
y.vals = y.values,
sd.y = sd.y.values)
system("rm -r tests/testthat/FAMoS-Results")
system("rm -r FAMoS-Results")
test_that("Gives the correct output", {
expect_match(res$binary, "00101")
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.