# For the land uses cursorily investigated in this thesis research, this function will sum SURO,
# AGWO, and IFWO flows for each land use and create timeseries of these summed data. This function
# should be run on the deq2 server.
land.use.timeseries <- function(dirpath, segname) {
csv.file <- paste0(dirpath, '/', segname, '_0111-0211-0411.csv')
data <- try(read.csv(csv.file))
if (class(data) == 'try-error') {
stop(paste0("ERROR: Missing climate .csv files (including ", dirpath, "/", segname, '_0111-0211-0411.csv)'))
}
trim <- which(as.Date(data$thisdate) >= as.Date('1991-01-01') & as.Date(data$thisdate) <= as.Date('2000-12-31'))
data <- data[trim,]
land.use.timeseries <- data.frame(matrix(data = NA, nrow = length(as.Date('1991-01-01'):as.Date('2000-12-31')), ncol = 6))
colnames(land.use.timeseries) = c('date', 'cch', 'cci', 'for', 'pas', 'soy')
land.use.timeseries$date <- as.Date('1991-01-01'):as.Date('2000-12-31')
data$cch <- data$cch_suro + data$cch_ifwo + data$cch_agwo
data$cci <- data$cci_suro + data$cci_ifwo + data$cci_agwo
data$`for` <- data$for_suro + data$for_ifwo + data$for_agwo
data$pas <- data$pas_suro + data$pas_ifwo + data$pas_agwo
data$soy <- data$soy_suro + data$soy_ifwo + data$soy_agwo
land.use.timeseries <- aggregate(x = list(cch = data$cch, cci = data$cci, `for` = data$`for`,
pas = data$pas, soy = data$soy),
FUN = sum, by = list(date = as.Date(data$thisdate)))
write.csv(land.use.timeseries, paste(dirpath, paste0('land.use.timeseries_', segname, '.csv'), sep = '/'))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.