R/Markov_noipd.R

Defines functions Markov_noipd

##########################################################################################
##========================================================================================
## START OF MARKOV_NOIPD FUNCTION
##========================================================================================
##########################################################################################

##========================================================================================
## THIS FUNCTION RETURNS THE STATE OCCUPANCY PROBABILITIES (PROBABILITIES OVER TIME OF 
## BEING IN EACH STATE) BASED ON THE MODEL COEFFICIENTS OR MORTALITY RATES GIVEN AS INPUTS 

## MODIFIBLE ARGUMENTS:
## ntrans       NUMBER OF TRANSITIONS IN THE MODELLING
## type         SOURCE OF INPUT. EITHER "parametric model" OR "mortality hazard".
##              REQUIRED FOR EACH TRANSITION
## morhaz       APPLICABLE IF TYPE="mortality hazard". 
## ncovs        NUMBER OF COVARIATE PARAMETERS IN THE MODEL (EXCLUDING INTERCEPT) FOR EACH
##              TRANSITION I.E. ONE FOR EACH BINARY AND CONTINUOUS VARIABLE AND K-1 FOR  
##              EACH CATEGORICAL VARIABLE, WHERE K= NO OF CATEGORIES
## covs         VARIABLE NAMES FOR THE COVARIATES
## covcoeff     COEFFICIENTS RELATING TO EACH OF THE COVARIATES FOR EACH OF THE TRANSITIONS
## coveval      VALUE AT WHICH TO EVALUATE EACH COVARIATE
## dist         DISTRIBUTION TO USE FOR EACH TRANSITION. OPTIONS ARE:
##              wei FOR WEIBULL, exp FOR EXPONENTIAL, gom FOR GOMPERTZ,
##              logl FOR LOGLOGISTIC,logn FOR LOGNORMAL AND gam FOR GENERALISED GAMMA 
## logscale     COEFFICIENT FOR LOG(SCALE) FOR EACH OF THE TRANSITIONS - APPLICABLE TO
##              WEIBULL, EXPONENTIAL, LOGLOGISTIC, LOGNORMAL
## logshape     COEFFICIENT FOR LOG(SHAPE) FOR EACH OF THE TRANSITIONS - APPLICABLE TO 
##              WEIBULL, LOGLOGISTIC,LOGNORMAL
## rate         COEFFICIENT FOR RATE - APPLICABLE TO GOMPERTZ
## loglevel     COEFFICIENT FOR LOG(LEVEL) - APPLICABLE TO GOMPERTZ
## mu           COEFFICIENT FOR MU - APPLICABLE TO GENERALISED GAMMA
## sigma        COEFFICIENT FOR SIGMA - APPLICABLE TO GENERALISED GAMMA
## Q            COEFFICIENT FOR Q - APPLICABLE TO GENERALISED GAMMA
## alt1end      THIS SHOULD BE SET TO TRUE IF AN ADJUSTMENT IS REQUIRED TO TIMEPOINTS AT
##              THE END OF SEQUENCE (SEE README FILE). OTHERWISE IT SHOULD BE FALSE
## alt2beg      THIS SHOULD BE SET TO TRUE IF AN ADJUSTMENT IS REQUIRED TO TIMEPOINTS AT
##              THE BEGINNING OF THE SEQUENCE (SEE README FILE).OTHERWISE IT SHOULD BE
##              FALSE
## ttend        APPLICABLE IF alt1end and alt2beg are FALSE. TIMEPOINT AT WHICH TO END 
##              EXTRAPOLATION
## ttinc        APPLICABLE IF alt1end and alt2beg are FALSE. GAP BETWEEN TIMEPOINTS
## tt1end       APPLICABLE IF alt1end = TRUE. THE ENDPOINT OF TIME BEFORE ADJUSTMENT 
##              TO THE LAST PART OF THE TIME SEQUENCE IS REQUIRED
## tt1inc       APPLICABLE IF alt1end = TRUE. THE GAP BETWEEN TIMEPOINTS TO USE
##              BEFORE ADJUSTMENT TO THE LAST PART OF THE TIME SEQUENCE
## tt1end2      APPLICABLE IF alt1end = TRUE. THE TIME HORIZON I.E. THE ENDPOINT OF 
##              THE ADJUSTMENT TO THE LAST PART OF THE TIME SEQUENCE
## tt1inc2      APPLICABLE IF alt1end = TRUE. THE GAP BETWEEN TIMEPOINTS TO USE FOR
##              THE ADJUSTMENT TO THE LAST PART OF THE TIME SEQUENCE (WHICH SHOULD BE 
##              SMALLER THAN tt1inc)
## tt2beg       APPLICABLE IF alt2beg = TRUE. THE TIMEPOINTS TO BE ADDED TO THE
##              BEGINNING OF THE TIME SEQUENCE
## tt2start     APPLICABLE IF alt2beg = TRUE. POINT AT WHICH TO START THE NEXT SECTION OF
##              THE TIME SEQUENCE (AFTER THE ADJUSTMENT OF ADDITIONAL TIMEPOINTS TO THE
##              BEGINNING OF THE SEQUENCE)
## tt2inc       APPLICABLE IF alt2beg = TRUE and alt1end = FALSE. THE GAP BETWEEN 
##              TIMEPOINTS TO USE FOR THE LAST PART OF THE TIME SEQUENCE
## tt2end       APPLICABLE IF alt2beg = TRUE and alt1end = FALSE. THE TIME HORIZON 
##              I.E. THE  FINAL POINT OF THE TIME SEQUENCE
## data         DATASET TO USE FOR MODELLING
## trans        TRANSITION MATRIX
##========================================================================================

## NB. THIS FUNCTION USES THE SAME PARAMETERISATIONS AS phreg AND aftreg IN THE eha PACKAGE
## AND flexsurvreg IN THE flexsurv PACKAGE

Markov_noipd<-function(ntrans=3,
                type=c("parametric model","parametric model", "mortality hazard"),      
                morhaz=c(0,0, 0.05),
                ncovs=c(1,1,2), 
                covs=rbind("covariate1", "covariate1",c("covariate1", "covariate2")),
                covcoeff=rbind(-0.537, -0.402, c(0.487, -0.687)),
                coveval=rbind(0,0,c(0,1)),  
                dist=cbind("wei", "wei", "wei"),
                logscale=c(1.289, 3.997, 0.174 ),
                logshape=c(0.441, -0.236, -0.524 ),
                rate=c(0.474,  -0.487),
                loglevel=c( -2.187,  -2.825),
                mu=c(1.300, 3.160, 1.370),
                sigma=c(0.623, 5.780, 0.806),
                Q=c(1.050, -3.280, 1.160 ),   
                alt1end=FALSE, alt2beg=FALSE,
                ttend=15, ttinc=1/12,
                tt1end=118/12, tt1inc=1/12,tt1end2=15, tt1inc2=0.007,
                tt2beg=c(0,0.00001,0.005), tt2start=1/12, tt2inc=1/12,tt2end=15,
                data=msmcancer, trans=tmat){
  #### create the timepoints
  if(alt1end==FALSE & alt2beg==FALSE){
    tt<-seq(0,ttend,ttinc)
  }
  if(alt1end==TRUE & alt2beg==FALSE){
    tt<-c(seq(0,tt1end,tt1inc), seq(tt1end+tt1inc2, tt1end2,tt1inc2))
  }
  if(alt2beg==TRUE & alt1end==FALSE){
    tt<-c(tt2beg, seq(tt2start, tt2end,tt2inc))
  }
  if(alt2beg==TRUE & alt1end==TRUE){
    tt<-c(tt2beg, seq(tt2start, tt1end,tt1inc), seq(tt1end+tt1inc2, tt1end2,tt1inc2))
  }
  #### set up required lists 
  covcoeffs<-vector("list", ntrans)
  lp<-vector("list", ntrans)
  x<-vector("list", ntrans)
  cumHaz<-vector("list", ntrans) 
  gamma<-vector("list", ntrans) 
  mu2<-vector("list", ntrans) 
  z<-vector("list", ntrans) 
  u<-vector("list", ntrans) 
  
  for (i in 1:ntrans) {
    #### calculations based on mortality hazards
    
    if (type[i]=="mortality hazard"){
      cumHaz[[i]] <-morhaz[i]*tt
    }
    #### calculations based on coefficients from each transition
    x[[i]]<-coveval[i,1:ncovs[i]]
    covcoeffs[[i]]<-covcoeff[i,1:ncovs[i]] 
    lp[[i]]<-sum(covcoeffs[[i]]* x[[i]] ) 
    #### cumulative hazards for each transition - distribution specific
    if (type[i]== "parametric model" &  dist[i]=="wei") {
    cumHaz[[i]]<-exp(-exp(logshape[i])*logscale[i]+lp[[i]])*tt^exp(logshape[i])
      }
    if (type[i]== "parametric model" &  dist[i]=="exp") {
    cumHaz[[i]]<-exp(-logscale[i]+lp[[i]])*tt
    }
    if (type[i]== "parametric model" &  dist[i]=="gom") {
    cumHaz[[i]]<-exp(loglevel[i]+lp[[i]])*(1/rate[i])*(exp(rate[i]*tt) -1)   
    }  
    if (type[i]== "parametric model" &  dist[i]=="logl") {
      cumHaz[[i]]<- -log(1/(1+(exp(lp[[i]]-logscale[i])*tt)^
                              (1/exp(-logshape[i]))))
    }
    if (type[i]== "parametric model" &  dist[i]=="logn") {
      cumHaz[[i]]<- -log(1-pnorm((log(tt)-(logscale[i]-lp[[i]]))/
                                   (exp(-logshape[i]))))  
    }
    if (type[i]== "parametric model" &  dist[i]=="gam") {
      gamma[[i]]<-(abs(Q[i]))^(-2)
      mu2[[i]]<- mu[i] +lp[[i]] 
      z[[i]]<-rep(0,length(tt))
      z[[i]]<- sign(Q[i])*((log(tt)-mu2[[i]])/sigma[i])
      u[[i]]<-gamma[[i]]*exp((abs(Q[i]))*z[[i]])
      if(Q[i]>0){
        cumHaz[[i]]<--log(1-pgamma(u[[i]],gamma[[i]]))
      }
      if(Q[i]==0){
        cumHaz[[i]]<--log(1-pnorm(z[[i]]))
      }
      if(Q[i]<0){
        cumHaz[[i]]<--log(pgamma(u[[i]],gamma[[i]]))
      }
    }
    
   }
  Haz<-unlist(cumHaz)
  newtrans<-rep(1:ntrans,each=length(tt))
  time<-rep(tt,ntrans)
  Haz<-cbind(time=as.vector(time),Haz=as.vector(Haz),trans=as.vector(newtrans))
  Haz<-as.data.frame(Haz)
  ##### state occupancy probabilities
  msf<-list(Haz,trans)
  msf$trans<-trans
  msf$Haz<-Haz
  class(msf)<-"msfit"
  stateprobs <- probtrans(msf, predt = 0,variance=FALSE)
  return(stateprobs)
}

##########################################################################################
##========================================================================================
## END OF MARKOV_NOIPD FUNCTION
##========================================================================================
##########################################################################################  
  
HealthEconomicsHackathon/ceatutorial documentation built on Nov. 7, 2019, 12:09 a.m.