library(rmap); library(dplyr); library(ggplot2)
# Grid Example
# a1 <- readRDS("C:/Z/metarepos/khan-etal_2021_NatureScientificData/figures/df_annual.RDS"); a1
# dataGridTest <- a1 %>% rename(scenario = rcp_gcm) %>%
# filter (year == 2010)
# Load example data set from NASA SEDAC world population and reshape
# https://sedac.ciesin.columbia.edu/data/collection/gpw-v4
dataGridTest = rmap::example_gridData_GWPv4To2015 %>%
dplyr::mutate(units="person",
value=value/1,
class="class1",
scenario="scenario1")
dataGridTest = dataGridTest %>% bind_rows(dataGridTest%>%mutate(scenario="scenario2",value=value*10))
dataGridTest = dataGridTest %>% bind_rows(dataGridTest%>%mutate(class="class2",value=value*5))
dataGridTest$scenario%>%unique()
dataGridTest$x%>%unique()
fillColumn = "value"
theme_custom = theme(panel.background = element_rect(size =1, fill="red"),
strip.text = element_text(size=15, color="blue"))
theme_ggplot = ggplot2::theme_dark()
# Test Grids
if(T){# Tests
# Need to assign the grid data to the "grid" argument
rmap::map(data=dataGridTest %>%
filter(x %in% c(2015),
scenario %in% c("scenario1"),
class %in% c("class1")),
folder = "rmapTEST_grid_Single"
)
# data=dataGridTest %>%
# filter(x %in% c(2015),
# scenario %in% c("scenario1"),
# class %in% c("class1"))
# folder = "rmapTEST_grid_Single"
rmap::map(data=dataGridTest %>%
filter(x %in% c(2015),
#scenario %in% c("scenario1"),
class %in% c("class1")),
folder = "rmapTEST_grid_MultiScenario",
scenRef = "scenario1"
)
rmap::map(data=dataGridTest %>%
filter(#x %in% c(2015),
scenario %in% c("scenario1"),
class %in% c("class1")),
folder = "rmapTEST_grid_MultiX",
xRef = "2015",
scenRef = "scenario1"
)
rmap::map(data=dataGridTest %>%
filter(x %in% c(2015),
scenario %in% c("scenario1"),
#class %in% c("class1")
),
folder = "rmapTEST_grid_MultiClass",
scenRef = "scenario1"
)
rmap::map(data=dataGridTest,
folder = "rmapTEST_grid_MultiAll",
scenRef = "scenario1",
xRef = "1990"
)
rmap::map(data=dataGridTest %>%
filter(x %in% c(2015)) %>%
rename(multiFacet1=class,
multiFacet2=scenario),
folder = "rmapTEST_grid_MultiFacet",
col = "multiFacet1",
row = "multiFacet2"
)
rmap::map(data=dataGridTest %>%
filter(x %in% c(2015),
scenario %in% c("scenario1"),
class %in% c("class1")) %>%
head(10000),
folder = "rmapTEST_grid_background",
background =T,
alpha = 1,
#zoom = -4,
theme =theme_dark(),
underLayer = rmap::mapCountries,
overLayer = rmap::mapUS52,
overLayerFill = "red",
overLayerAlpha = 0.3
#printFig = F
)
}
# Test Polygons
if(T){
# Single
dataPoly_test = data.frame(subRegion = c("CA","ID","AK","MA","NV","NM"),
x = c(2050,2050,2050,2050,2050,2050),
value = c(5,10,15,34,2,7))
a<-rmap::map(data=dataPoly_test,
shape = rmap::mapUS52Compact,
folder = "rmapTEST_poly_Single",
underLayer = rmap::mapUS52Compact,
labels=T,
underLayerLabels = T,
crop = F,
legendSingleValue = T,
legendSingleColor = "green"); a
# Test Background colors
a<-rmap::map(data=dataPoly_test,
shape = rmap::mapUS52Compact,
folder = "rmapTEST_poly_Single",
underLayer = rmap::mapUS52Compact,
labels=T,
underLayerLabels = T,
crop = F,
background = "white"); a
# Single
dataPoly_test = data.frame(subRegion = c(1:6),
x = c(2050,2050,2050,2050,2050,2050),
value = c(5,10,15,34,2,7))
a<-rmap::map(data=dataPoly_test,
shape = rmap::mapGCAMBasins,
folder = "rmapTEST_subRegionAlt",
labels=T); a
# data=dataPoly_test
# folder = "rmapTEST_subRegionAlt"
# labels=T
# Single Custom Shape
dataPoly_test = data.frame(subRegion = c("Punjab","Baluchistan","K.P.","Sind","Yazd","Tehran"),
x = c(2050,2050,2050,2050,2050,2050),
value = c(5,10,15,34,2,7))
a<-rmap::map(data=dataPoly_test,
shape=rmap::mapStates,
folder = "rmapTEST_poly_SingleCustom",
underLayer = rmap::mapCountries,
labels=T,
underLayerLabels = T,
crop = T,
legendSingleValue = T,
legendSingleColor = "green",
background = T); a
# Single
dataPoly_test = data.frame(subRegion = c("USA", "Argentina","Chile","Brazil"),
x = c(2050,2050,2050,2050),
value = c(5,10,15,34))
a<-rmap::map(data=dataPoly_test,
folder = "rmapTEST_poly_Single",
crop = T); a
}
# Test Simple Map Direct
if(T){
rmap::map(data=rmap::mapUS49,
folder="rmapTEST_shape",
labels = T, labelSize =3, labelFill="white",labelRepel=0,labelAlpha = 0.4)
rmap::map(data=rmap::mapStatesdf%>%dplyr::filter(region=="Pakistan")%>%droplevels(),
folder="rmapTEST_shape",
labels = T, labelSize =3, labelFill="white",labelRepel=0,labelAlpha = 0.4)
}
# Test Xanthos gird
if(T){
a <- data.table::fread("C:/Z/models/im3components/output/resampled_wrf_to_xanthos_monthly_RAINC_mm_2009_01_to_2009_01.csv") %>%
tibble::as_tibble() %>% dplyr::select(lat,lon,value=`2009_01`); a
a1<-rmap::map(data=a,
alpha=0.8,
legendType = "kmean",
crop = T,
background=T,
#legendTitle = "XSD",
underLayer = rmap::mapCountries,
overLayer = rmap::mapUS49,
overLayerLabels = T,
labelSize = 2,
labelFill = "white",
labelAlpha = 0.7,
#zoom=-1,
labelRepel = 0)
#
a <- data.table::fread("C:/Z/models/argus/inst/extdata/exampleDataUSA_template.csv") %>%
tibble::as_tibble(); a
a1<-rmap::map(data=a,
alpha=0.8,
legendType = "kmean",
crop = T,
background=T,
legendTitle = "XSD",
underLayer = rmap::mapUS49,
#underLayerLabels = F,
overLayer = rmap::mapUS49,
#overLayerLabels = T,
labelSize = 3,
labels=T,
#labelFill = "white",
labelAlpha = 0.7,
zoom=-1,
labelRepel = 0
)
}
# Test Shapefile
if(T){
library(rgdal)
examplePolyFolder<-paste("C:/Z/data/mapFiles/gis/shapefiles_Argentina",sep="")
examplePolyFile<-paste("ArgentinaLocalBasin",sep="")
x=rgdal::readOGR(dsn=examplePolyFolder,layer=examplePolyFile,use_iconv=T,encoding='UTF-8')
names(x@data); head(x@data);
sp::plot(x)
# Rename subRegion column
x@data <- x@data %>% dplyr::mutate(subRegion=cuenca);
# Generate some random data for each subRegion
data <- data.frame(subRegion=unique(x@data$subRegion),
value = 100*runif(length(unique(x@data$subRegion))));
head(data)
rmap::map(data,
shape=x,
underLayer=rmap::mapStates,
underLayerLabels = T,
zoom=-6)
}
# Map with rivers
if(T){
library(rmap)
library(rgdal)
library(dplyr)
examplePolyFolder<-paste("C:/Users/khan404/Downloads/Lakes_and_Rivers_Shapefile",sep="")
examplePolyFile<-paste("hydrography_l_rivers_v2",sep="")
x=rgdal::readOGR(dsn=examplePolyFolder,layer=examplePolyFile,use_iconv=T,encoding='UTF-8')
names(x@data); head(x@data);
# sp::plot(x)
# Rename subRegion column
x@data <- x@data %>% dplyr::mutate(subRegion=UIDENT,
subRegion=as.character(subRegion));
x1 <- rmap::shape_to_df(x); head(x1)
# Generate some random data for each subRegion
head(data)
}
# CombinedOnly
if(T){
library(rmap);
dataa = data.frame(subRegion = c("Austria","Spain", "Italy", "Germany","Greece",
"Austria","Spain", "Italy", "Germany","Greece",
"Austria","Spain", "Italy", "Germany","Greece"),
scenario = c("scen1","scen1","scen1","scen1","scen1",
"scen2","scen2","scen2","scen2","scen2",
"scen3","scen3","scen3","scen3","scen3"),
value = c(32, 38, 54, 63, 24,
37, 53, 23, 12, 45,
40, 44, 12, 30, 99))
head(dataa)
mapx <- rmap::map(data = dataa,
underLayer = rmap::mapCountries,
diffOnly = F,
save=T,
show=F,
scenRef = "scen1",
background = T)
names(mapx)
mapx[[1]]
mapx[[2]]
#
# data = dataa
# underLayer = rmap::mapCountries
# combinedOnly = T
# diffOnly = T
# save=F
# show=F
# scenRef = "GCAM_SSP2"
# #scenDiff = c("scen2"),
# background = T
}
# covr
if(T){
library(covr)
cov <- package_coverage()
as.data.frame(cov)
head(cov)
zero_coverage(cov)
}
# Intersected maps
if(T){
data <- data.frame(subRegion=c("New_England_X_Canada","New_England_X_USA"), value = c(5,10))
map_find_df(data)
rmap::map(data)
}
# JOSS review maczokni test
library(dplyr)
library(geodaData)
library(devtools)
devtools::install_github("JGCRI/rmap") # Update rmap
library(rmap)
ncovr <- geodaData::ncovr
# Subset first 10 rows to avoid repeated subRegions
mydata <- ncovr %>%
dplyr::select(NAME,HR60) %>%
head(10); mydata
# Will give you the relevant plot but multiple counties
# See how you can define your own columns as arguments
rmap::map(mydata,
subRegion = "NAME",
value = "HR60")
# Here you can see all the multiple counties labelled.
# rmap appends the State for you as it recognizes this.
# You can also see some of the other features of rmap here
# such as underLayer, zoom, labels etc.
rmap::map(mydata,
subRegion="NAME",
value="HR60",
labels = T,
labelSize = 3,
labelRepel = T,
underLayer = rmap::mapUS49,
zoom=-2)
# Test for Brinda
library(rmap); library(dplyr); library(data.table); library(tibble)
total_basin_production_value_clean <- data.table::fread("C:/Z/models/tests/total_basin_production_value_clean.csv") %>% tibble::as_tibble()
plot_regions = c("South America_Southern",
"South America_Southern",
"Argentina", "Colombia", "Brazil")
plot_basin_production_value <- total_basin_production_value_clean %>%
filter(year %in% c(2015, 2050), region %in% plot_regions, scenario == "ARM_Reference") %>%
mutate(subRegion = gsub("Basin_", "", subRegion)) %>%
mutate(param = "param1") %>%
select(scenario, subRegion, param, value, year)
plot_map <- rmap::map(data=plot_basin_production_value,
#shape = rmap::mapIntersectGCAMBasin32Reg,
#folder = paste(getwd(), "/", PLOT_FOLDER, "/maps", sep = ""),
#nameAppend = paste("_LAC_production_v2", sep = ""),
xRef = 2015,
xDiff = 2050
)
plot_basin_production_value <- total_basin_production_value_clean %>%
filter(year %in% c(2015, 2050), region %in% plot_regions, scenario == "ARM_Reference") %>%
mutate(subRegion = gsub("Basin_", "", subRegion)) %>%
mutate(param = "param1") %>%
mutate(scenario = paste0(scenario,".",year)) %>%
select(scenario, subRegion, param, value)
plot_map <- rmap::map(plot_basin_production_value,
#folder = paste(getwd(), "/", PLOT_FOLDER, "/maps", sep = ""),
nameAppend = "_check",
scenRef = "ARM_Reference.2015",
scenDiff = c("ARM_Reference.2050"))
# Brinda DiffAbs
library(rmap); library(dplyr); library(data.table); library(tibble)
crop_bio_share_2050 <- data.table::fread("C:/Z/models/tests/crop_bio_share_2050.csv") %>% tibble::as_tibble()
plot_map <- rmap::map(crop_bio_share_2050,
folder = paste(getwd(),"/brinda", sep = ""),
title = paste("Basin crop/biomass land in 2050"),
scenRef = "ARM_Reference",
scenDiff = c("SW_high_CL_Reference", "ARM_Policy_CO2only",
"ARM_Policy_ls_MAC_global", "SW_high_CL_Policy_ls_MAC_global"),
nameAppend = paste("_crop_bio_share_", "2050", sep = ""))
diff_crop_bio_share_2050 <- data.table::fread("C:/Z/models/tests/diff_crop_bio_share_2050.csv") %>% tibble::as_tibble()
plot_map <- rmap::map(diff_crop_bio_share_2050,
folder = paste(getwd(), "/brinda", sep = ""),
title = paste("Basin crop/biomass land"),
nameAppend = paste("_crop_bio_alloc_basin_policy_v3", sep = ""))
# Reviewer Reka Comments 28 Feb 2022
library(rmap); library(geodaData); library(dplyr); library(sf); library(tidyverse)
library(readxl); library(janitor)
# Example 1
data("ncovr")
mydata <- ncovr %>%
dplyr::select(NAME, STATE_NAME, FIPS, HR60) %>%
sf::st_drop_geometry() %>%
dplyr::left_join(rmap::mapUS52County, by="FIPS")
rmap::map(data=mydata, value = "HR60", legendTitle = "HR60")
# Download file: https://data.london.gov.uk/download/gcse-results-by-borough/a8a71d73-cc48-4b30-9eb5-c5f605bc845c/gcse-results.xlsx
# read in new test data
#download.file("https://data.london.gov.uk/download/gcse-results-by-borough/a8a71d73-cc48-4b30-9eb5-c5f605bc845c/gcse-results.xlsx",
# destfile = "gcse-results.xlsx")
gcse_results <- readxl::read_xlsx("C:/Users/khan404/Downloads/gcse-results.xlsx", sheet = "2020-21")
# clean up test data
colnames <- paste0(gcse_results[1,], gcse_results[2,])
colnames <- gsub("NA", "", colnames)
names(gcse_results) <- colnames
gcse_results <- gcse_results %>%
janitor::clean_names() %>%
slice(4:36) %>%
mutate(number_of_pupils_at_the_end_of_key_stage_4 = as.numeric(number_of_pupils_at_the_end_of_key_stage_4))
# try to map using Local Authority name
my_map <- rmap::map(gcse_results,
subRegion = "area",
value = "number_of_pupils_at_the_end_of_key_stage_4",
legendTitle = "Pupils at KS4", save=F)
# Issue: https://github.com/openjournals/joss-reviews/issues/4015#issuecomment-1152889162
library(rmap); library(geodaData); library(dplyr); library(sf); library(tidyverse)
library(readxl); library(janitor)
gcse_results <- read_xlsx("C:/Users/khan404/Downloads/gcse-results.xlsx", sheet = "2020-21")
gcse_results_2 <- read_xlsx("C:/Users/khan404/Downloads/gcse-results.xlsx", sheet = "2019-20")
# clean up test data
colnames <- paste0(gcse_results[1,], gcse_results[2,])
colnames <- gsub("NA", "", colnames)
names(gcse_results) <- colnames
gcse_results <- gcse_results %>%
clean_names() %>%
slice(4:36) %>%
mutate(number_of_pupils_at_the_end_of_key_stage_4 = as.numeric(number_of_pupils_at_the_end_of_key_stage_4))
colnames <- paste0(gcse_results_2[1,], gcse_results_2[2,])
colnames <- gsub("NA", "", colnames)
names(gcse_results_2) <- colnames
gcse_results_2 <- gcse_results_2 %>%
clean_names() %>%
slice(4:36) %>%
mutate(number_of_pupils_at_the_end_of_key_stage_4 = as.numeric(number_of_pupils_at_the_end_of_key_stage_4))
gcse_results_joined <- rbind(gcse_results %>% mutate(year = "2020"),
gcse_results_2 %>% mutate(year = "2019"))
# Multiple ggplots saved as a list which can be edited later
rmap::map(data = gcse_results_joined,
subRegion = "area",
value = "number_of_pupils_at_the_end_of_key_stage_4")->mapx
mapx$map_param_KMEANS
mapx$map_param_MEAN_KMEANS
mapx$map_param_MEAN_KMEANS + ggplot2::theme_dark()
ggsave("map_param_MEAN_KMEANS_dark.png",width=8,height=8)
# Comapre across time
rmap::map(data = gcse_results_joined,
subRegion = "area",
value = "number_of_pupils_at_the_end_of_key_stage_4",
xRef = 2019,
save =T, show =F) -> mapx
mapx$map_param_KMEANS_xDiffPrcnt
ggsave("map_param_MEAN_KMEANS.png",width=8,height=8)
gcse_results_joined_classes <- gcse_results_joined %>%
dplyr::mutate(gender = "girls") %>%
dplyr::bind_rows(gcse_results_joined %>%
dplyr::mutate(gender="boys",
number_of_pupils_at_the_end_of_key_stage_4 =
number_of_pupils_at_the_end_of_key_stage_4*runif(nrow(gcse_results_joined))))
rmap::map(data = gcse_results_joined_classes,
class = "gender",
subRegion = "area",
xRef = 2019,
value = "number_of_pupils_at_the_end_of_key_stage_4") -> mapx
mapx$map_param_KMEANS
mapx$map_param_KMEANS_xDiffPrcnt
gcse_results_joined_classes_scenario <- gcse_results_joined_classes %>%
dplyr::mutate(income_level = "high_income") %>%
dplyr::bind_rows(gcse_results_joined_classes %>%
dplyr::mutate(income_level="low_income",
number_of_pupils_at_the_end_of_key_stage_4 =
number_of_pupils_at_the_end_of_key_stage_4*runif(nrow(gcse_results_joined_classes))))
rmap::map(data = gcse_results_joined_classes_scenario,
class = "gender",
scenario = "income_level",
subRegion = "area",
xRef = 2019,
scenRef = "low_income",
value = "number_of_pupils_at_the_end_of_key_stage_4",
save=T,show=F) -> mapx
mapx$map_param_KMEANS
mapx$map_param_KMEANS_DiffPrcnt
# Test Covid data
# Our World in Data JHU https://github.com/owid/covid-19-data/tree/master/public/data
# State vaccination data: https://github.com/owid/covid-19-data/raw/master/public/data/vaccinations/us_state_vaccinations.csv
# Prep Data and keep only country names
covid_data <- read.csv(url("https://github.com/owid/covid-19-data/raw/master/public/data/vaccinations/us_state_vaccinations.csv"))%>%
tibble::as_tibble() %>%
dplyr::select(subRegion=location,date,value=people_vaccinated_per_hundred) %>%
dplyr::mutate(subRegion = dplyr::if_else(subRegion=="New York State","New York",subRegion)) %>%
dplyr::filter(date == max(date),
subRegion %in% rmap::mapUS49$subRegionAlt); covid_data
rmap::map(covid_data,
title=paste0("People Vaccinated per hundered ",max(covid_data$date)),
legendTitle = "People per 100")
# Brinda Diff test
library(rmap)
plot_map <- rmap::map(data="ls_irr_water_wd_basin_2050.csv",
title = paste("Basin livestock + irrigation water withdrawal in 2050"),
scenRef = "ARM_Reference",
scenDiff = c( "SW_high_CL_Reference","ARM_Policy_ls_MAC_global"),
nameAppend = paste("_water_wd_basin_", "2050", sep = ""),
pdfpng = 'pdf')
data="ls_irr_water_wd_basin_2050.csv"
title = paste("Basin livestock + irrigation water withdrawal in 2050")
scenRef = "ARM_Reference"
scenDiff = c( "ARM_Policy_ls_MAC_global")
nameAppend = paste("_water_wd_basin_", "2050", sep = "")
pdfpng = 'pdf'
library(rmap); library(dplyr)
shapeSubset <- rmap::mapStates # Read in World States shape file
shapeSubset <- shapeSubset %>% dplyr::filter(region == "Canada")
m1<-rmap::map(data=shapeSubset,
labels=T,
labelSize = 3,
labelFill = "white",
labelAlpha = 0.6,
labelRepel = 2,
underLayer=rmap::mapCountriesUS52,
background=T,
zoomx = -1)
library(rmap); library(dplyr)
shapeSubset <- rmap::mapStates # Read in World States shape file
shapeSubset <- shapeSubset %>% dplyr::filter(region == "Canada")
m1<-rmap::map(data=shapeSubset,
labels=T,
labelSize = 3,
labelFill = "white",
labelAlpha = 0.6,
labelRepel = 2,
underLayer=rmap::mapCountriesUS52,
background=T,
crs="+proj=lcc +lat_1=49 +lat_2=77 +lat_0=0 +lon_0=-95 +x_0=0 +y_0=0 +datum=NAD83 +units=m +no_defs")
# Issue #90
# https://github.com/JGCRI/rmap/issues/90
library(rmap)
data = data.frame("subRegion"=c("EU-12","EU-15"));
rmap::map(data, legendShowForce=T)
rmap::mapGCAMReg32$subRegion%>%unique()
# Issue #89
# https://github.com/JGCRI/rmap/issues/89
library(rmap)
rmap::map(mapGCAMReg32, nameAppend="_reg32")
rmap::map(mapGCAMReg32Uruguay, nameAppend="_reg32Uruguay")
# Paper Maps
library(rmap)
data = data.frame(subRegion = c("China","India","Pakistan","Iran","Afghanistan"),
value = c(5,10,15,34,2))
map(data)
library(rmap)
data = data.frame(subRegion = c("CA","FL","ID","MO","TX","WY"),
value = c(5,10,15,34,2,7))
map(data,
underLayer = mapUS52Compact,
crop_to_underLayer = T,
labels = T)
library(rmap)
data = data.frame(subRegion = c("Spain","Germany","Austria","Greece","Italy",
"Spain","Germany","Austria","Greece","Italy",
"Spain","Germany","Austria","Greece","Italy"),
value = c(5,10,15,34,2,
15,50,34,50,20,
1,2,7,13,5),
scenario = c("scen1","scen1","scen1","scen1","scen1",
"scen2","scen2","scen2","scen2","scen2",
"scen3","scen3","scen3","scen3","scen3"))
map(data,
underLayer = mapCountries,
scenRef = "scen1",
background = T)
library(rmap); library(dplyr);
a1<-readRDS("a1.RDS")
rmap::map(a1)
#...........
# Abby County maps
#-----------
library(rmap); library(dplyr); library(stats)
data1 = rmap::mapUS49County %>% as.data.frame() %>% dplyr::mutate(value=as.numeric(FIPS)*sample(runif(10000), n(), replace = TRUE)); data
rmap::map(data1, palette="Reds", show=F, nameAppend = "_reds")
data2 = rmap::mapUS49County %>% as.data.frame() %>% dplyr::mutate(value=log2(as.numeric(FIPS))*sample(runif(10000), n(), replace = TRUE)); data
rmap::map(data2, palette="Greens", show=F, nameAppend = "_greens")
data3 = rmap::mapUS49County %>% as.data.frame() %>% dplyr::mutate(value=as.numeric(FIPS)*sample(runif(10000), n(), replace = TRUE)); data
rmap::map(data3, palette="Blues", show=F, nameAppend = "_blues")
#...........
# Review https://github.com/openjournals/joss-reviews/issues/4015#issuecomment-1216784122
#-----------
library(stringr)
library(dplyr)
library(rmap)
# Get infectious disease data
download.file("https://data.chhs.ca.gov/dataset/03e61434-7db8-4a53-a3e2-1d4d36d6848d/resource/75019f89-b349-4d5e-825d-8b5960fc028c/download/odp_idb_2020_ddg_compliant.csv",
destfile = "infect_disease_us_county.csv", mode ="wb")
i_disease = read.csv("infect_disease_us_county.csv") ; colnames(i_disease)
# Clean data : keep years 2018-2020 and cases of Malaria, Typhus, Dengue and Lyme diseases
i_4_disease <- i_disease %>%
subset(grepl("Malaria|Typhus|Dengue|Lyme", Disease) & grepl("Total", Sex) & grepl("2018|2019|2020", Year)) %>%
filter(County != "California") %>% # csv contains a row with sum of cases for all counties in California
mutate(County = paste0(County, "_CA")) # add proper state abbreviation to match built-in map counties
malaria_map_diff_2018 = map(i_4_disease[i_4_disease == "Malaria", ],
subRegion = "County",
value = "Cases",
save = T, show=F,
xRef = "2018",
underLayer = mapUS49County,
labels=T, legendSingleValue = 0, showNA = T)
malaria_map_diff_2018$map_param_KMEANS
malaria_map_diff_2018$map_param_KMEANS_xDiffAbs
malaria_map_diff_2018$map_param_KMEANS_xDiffPrcnt
# EU Test
library(rmap); library(dplyr);
colors_eu <- c("#68affc", "#a2e84f", "#9d0d6c", "#4aeeb6", "#fe2b1c", "#36e515",
"#8115b4", "#63a122", "#da73f8", "#1c5f1e", "#fa1bfc", "#bcdeae",
"#7a3003", "#20d8fd", "#fa718e", "#347383", "#fab5b5", "#5a396e",
"#ed9845", "#1945c5", "#e8d746", "#b69cfd", "#544516", "#ad7484",
"#aee39a", "#b1475c", "#42f18f", "#ff98cc", "#13a64f", rep("gray90",40)); colors_eu
names(colors_eu) <- c(eu,mapGCAMReg32$region); colors_eu
rmap::map(rmap::mapGCAMReg32EU, save=T, labels = T, show=F,palette = colors_eu, width=20, height=20)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.