# ==== SIS_fsMCMC_beta ====
SIS_fsMCMC_beta = function(obsTransData, I_0, obsTimes, N, beta0, gamma, thetaLim, lambda, noDraws, s, noIts,
burnIn = 0, lagMax = NA, thinningFactor = 1){
Start = as.numeric(Sys.time())
noSampled = sum(obsTransData[[1]])
thetaCurr = beta0
logPCurr = -Inf
while(logPCurr == -Inf){
ECurr = rexp(noDraws)
UCurr = runif(noDraws)
sim = homogeneousPanelDataSIS_GillespieEU(initialState = c(rep(1, N - I_0), rep(2, I_0)), thetaCurr[1],
gamma, obsTimes,
ECurr, UCurr)
panelDataSim = sim$panelData
transDataSim = transitionData(panelDataSim, states = 1:2)
logPCurr = dHyperGeom(obsTransData, transDataSim, noSampled, log = T)
}
#' Create Storage Matrix
draws = matrix(NA, nrow = noIts + 1, ncol = length(thetaCurr) + 1)
draws[1,] = c(thetaCurr, logPCurr)
#' Proposal Acceptance Counter
acceptTheta = 0
acceptEU = 0
print("Sampling Progress")
pb <- progress::progress_bar$new(total = noIts)
for(i in 1:noIts){
pb$tick()
# ==== Beta and Gamma Proposal ====
#' Folded Normal
thetaProp = abs(thetaCurr + rnorm(1, 0, lambda))
# logThetaCurr = log(thetaCurr)
# logThetaProp = logThetaCurr + mvtnorm::rmvnorm(1, mean = rep(0, 2), sigma = lambda*V)
# thetaProp = exp(logThetaProp)
newSim = homogeneousPanelDataSIS_GillespieEU(initialState = c(rep(1, N - I_0), rep(2, I_0)), thetaProp,
gamma, obsTimes, ECurr, UCurr)
transDataSim = transitionData(newSim$panelData, states = 1:2)
logPProp = dHyperGeom(obsTransData, transDataSim, noSampled, log = T)
# + sum(thetaCurr)
if(sum(thetaProp < thetaLim) == length(thetaCurr)){
logA = (logPProp + sum(dexp(thetaCurr, rate = 0.001, log = T)) ) -
(logPCurr + sum(dexp(thetaProp, rate = 0.001, log = T)) )
} else{
logA = -Inf
}
logU = log(runif(1))
if(logU < logA){
logPCurr = logPProp
thetaCurr = thetaProp
acceptTheta = acceptTheta + 1
}
# ==== E and U proposal ====
proposalSet = sample(1:noDraws, size = s, replace = F)
EProp = ECurr
UProp = UCurr
EProp[proposalSet] = rexp(s)
UProp[proposalSet] = runif(s)
panelDataSim = homogeneousPanelDataSIS_GillespieEU(initialState = c(rep(1, N - I_0), rep(2, I_0)), thetaCurr,
gamma, obsTimes, EProp, UProp)$panelData
transDataSim = transitionData(panelDataSim, states = 1:2)
logPProp = dHyperGeom(obsTransData, transDataSim, noSampled, log = T)
logA = (logPProp) - (logPCurr)
logU = log(runif(1))
if(logU < logA){
logPCurr = logPProp
ECurr = EProp
UCurr = UProp
acceptEU = acceptEU + 1
}
#' Store State
draws[i+1, ] = c(thetaCurr, logPCurr)
}
End <- as.numeric(Sys.time())
timeTaken <- End - Start
# Thin the samples
draws <- draws[seq(from = burnIn + 1, to = (noIts + 1) - burnIn, by = thinningFactor),]
# Calculate Effective Sample Sizes (and Per Second) and Acceptance Rates
ESS <- coda::effectiveSize(draws[,1:2])
ESS.sec <- ESS/timeTaken
acceptRate <- c(acceptTheta, acceptEU)/noIts
# = Plots =
par(mfrow = c(1,2))
# Plot Beta Samples and Sample Auto-Corrolation Function
if(is.na(lagMax)){
# Beta
plot(draws[, 1], type = 'l', ylab = expression(beta))
acf(draws[, 1], main = "")
} else{
# Beta
plot(draws[, 1], type = 'l', ylab = expression(beta))
acf(draws[, 1], lagMax, main = "")
}
#' Calculating Summary Statistics for samples
betaSummary = c(mean(draws[,1]), sd(draws[,1]))
printed_output(rinf_dist = "Exp", no_proposals = NA, noIts, ESS, timeTaken, ESS.sec, acceptRate)
return(list(draws = draws, acceptRate = acceptRate, ESS = ESS, ESS.sec = ESS.sec,
betaSummary = betaSummary, timeTaken = timeTaken))
}
# ==== SIS_fsMCMC_oneProposal ====
SIS_fsMCMC_oneProposal = function(obsTransData, I_0, obsTimes, N, beta0, gamma0, thetaLim, lambda, V, noDraws, s, noIts,
burnIn = 0, lagMax = NA, thinningFactor = 1){
Start = as.numeric(Sys.time())
noSampled = sum(obsTransData[[1]])
thetaCurr = c(beta0, gamma0)
logPCurr = -Inf
while(logPCurr == -Inf){
ECurr = rexp(noDraws)
UCurr = runif(noDraws)
sim = homogeneousPanelDataSIS_GillespieEU(initialState = c(rep(1, N - I_0), rep(2, I_0)), thetaCurr[1],
thetaCurr[2], obsTimes,
ECurr, UCurr)
panelDataSim = sim$panelData
transDataSim = transitionData(panelDataSim, states = 1:2)
logPCurr = dHyperGeom(obsTransData, transDataSim, noSampled, log = T)
}
#' Create Storage Matrix
draws = matrix(NA, nrow = noIts + 1, ncol = length(thetaCurr) + 1)
draws[1,] = c(thetaCurr, logPCurr)
#' Proposal Acceptance Counter
acceptTheta = 0
print("Sampling Progress")
pb <- progress::progress_bar$new(total = noIts)
for(i in 1:noIts){
pb$tick()
# ==== Beta and Gamma Proposal ====
#' Folded Normal
thetaProp = abs(thetaCurr + mvtnorm::rmvnorm(1, mean = rep(0, 2), sigma = lambda*V))
# logThetaCurr = log(thetaCurr)
# logThetaProp = logThetaCurr + mvtnorm::rmvnorm(1, mean = rep(0, 2), sigma = lambda*V)
# thetaProp = exp(logThetaProp)
# ==== E and U proposal ====
proposalSet = sample(1:noDraws, size = s, replace = F)
EProp = ECurr
UProp = UCurr
EProp[proposalSet] = rexp(s)
UProp[proposalSet] = runif(s)
newSim = homogeneousPanelDataSIS_GillespieEU(initialState = c(rep(1, N - I_0), rep(2, I_0)), thetaProp[1],
thetaProp[2], obsTimes, ECurr, UCurr)
transDataSim = transitionData(newSim$panelData, states = 1:2)
logPProp = dHyperGeom(obsTransData, transDataSim, noSampled, log = T)
# + sum(thetaCurr)
if(sum(thetaProp < thetaLim) == 2){
logA = (logPProp + sum(dexp(thetaCurr, rate = 0.001, log = T)) ) -
(logPCurr + sum(dexp(thetaProp, rate = 0.001, log = T)) )
} else{
logA = -Inf
}
logU = log(runif(1))
if(logU < logA){
logPCurr = logPProp
thetaCurr = thetaProp
UCurr = UProp
ECurr = EProp
acceptTheta = acceptTheta + 1
}
#' Store State
draws[i+1, ] = c(thetaCurr, logPCurr)
}
End <- as.numeric(Sys.time())
timeTaken <- End - Start
# Thin the samples
draws <- draws[seq(from = burnIn + 1, to = (noIts + 1) - burnIn, by = thinningFactor),]
# Calculate Effective Sample Sizes (and Per Second) and Acceptance Rates
ESS <- coda::effectiveSize(draws[,1:2])
ESS.sec <- ESS/timeTaken
acceptRate <- acceptTheta/noIts
# = Plots =
par(mfrow = c(2,2))
# Plot Beta Samples and Sample Auto-Corrolation Function
if(is.na(lagMax)){
# Beta
plot(draws[, 1], type = 'l', ylab = expression(beta))
acf(draws[, 1], main = "")
# Gamma
plot(draws[, 2], type = 'l', ylab = expression(gamma))
acf(draws[, 2], main = "")
} else{
# Beta
plot(draws[, 1], type = 'l', ylab = expression(beta))
acf(draws[, 1], lagMax, main = "")
# Gamma
plot(draws[, 2], type = 'l', ylab = expression(gamma))
acf(draws[, 2], lagMax, main = "")
}
#' Calculating Summary Statistics for samples
betaSummary = c(mean(draws[,1]), sd(draws[,1]))
gammaSummary = c(mean(draws[,2]), sd(draws[,2]))
printed_output(rinf_dist = "Exp", no_proposals = NA, noIts, ESS, timeTaken, ESS.sec, acceptRate)
return(list(draws = draws, acceptRate = acceptRate, ESS = ESS, ESS.sec = ESS.sec,
betaSummary = betaSummary, gammaSummary = gammaSummary, timeTaken = timeTaken))
}
# ==== SIS_fsMCMC ====
SIS_fsMCMC = function(obsTransData, I_0, obsTimes, N, beta0, gamma0, thetaLim, lambda, V, noDraws, s, noIts,
burnIn = 0, lagMax = NA, thinningFactor = 1){
Start = as.numeric(Sys.time())
noSampled = sum(obsTransData[[1]])
thetaCurr = c(beta0, gamma0)
logPCurr = -Inf
while(logPCurr == -Inf){
ECurr = rexp(noDraws)
UCurr = runif(noDraws)
sim = homogeneousPanelDataSIS_GillespieEU(initialState = c(rep(1, N - I_0), rep(2, I_0)), thetaCurr[1],
thetaCurr[2], obsTimes,
ECurr, UCurr)
panelDataSim = sim$panelData
transDataSim = transitionData(panelDataSim, states = 1:2)
logPCurr = dHyperGeom(obsTransData, transDataSim, noSampled, log = T)
}
#' Create Storage Matrix
draws = matrix(NA, nrow = noIts + 1, ncol = length(thetaCurr) + 1)
draws[1,] = c(thetaCurr, logPCurr)
#' Proposal Acceptance Counter
acceptTheta = 0
accProbs = c()
acceptEU = 0
#print("Sampling Progress")
#pb <- progress::progress_bar$new(total = noIts)
for(i in 1:noIts){
#pb$tick()
# ==== Beta and Gamma Proposal ====
#' Folded Normal
thetaProp = abs(thetaCurr + mvtnorm::rmvnorm(1, mean = rep(0, 2), sigma = lambda*V))
# logThetaCurr = log(thetaCurr)
# logThetaProp = logThetaCurr + mvtnorm::rmvnorm(1, mean = rep(0, 2), sigma = lambda*V)
# thetaProp = exp(logThetaProp)
newSim = homogeneousPanelDataSIS_GillespieEU(initialState = c(rep(1, N - I_0), rep(2, I_0)), thetaProp[1],
thetaProp[2], obsTimes, ECurr, UCurr)
transDataSim = transitionData(newSim$panelData, states = 1:2)
logPProp = dHyperGeom(obsTransData, transDataSim, noSampled, log = T)
# + sum(thetaCurr)
if(sum(thetaProp < thetaLim) == 2){
logA = (logPProp + sum(dexp(thetaCurr, rate = 0.001, log = T)) ) -
(logPCurr + sum(dexp(thetaProp, rate = 0.001, log = T)) )
} else{
logA = -Inf
}
accProbs[i] = exp(logA)
logU = log(runif(1))
if(logU < logA){
logPCurr = logPProp
thetaCurr = thetaProp
acceptTheta = acceptTheta + 1
}
# ==== E and U proposal ====
proposalSet = sample(1:noDraws, size = s, replace = F)
EProp = ECurr
UProp = UCurr
EProp[proposalSet] = rexp(s)
UProp[proposalSet] = runif(s)
panelDataSim = homogeneousPanelDataSIS_GillespieEU(initialState = c(rep(1, N - I_0), rep(2, I_0)), thetaCurr[1],
thetaCurr[2], obsTimes, EProp, UProp)$panelData
transDataSim = transitionData(panelDataSim, states = 1:2)
logPProp = dHyperGeom(obsTransData, transDataSim, noSampled, log = T)
logA = (logPProp) - (logPCurr)
logU = log(runif(1))
if(logU < logA){
logPCurr = logPProp
ECurr = EProp
UCurr = UProp
acceptEU = acceptEU + 1
}
#' Store State
draws[i+1, ] = c(thetaCurr, logPCurr)
}
End <- as.numeric(Sys.time())
timeTaken <- End - Start
# Thin the samples
draws <- draws[seq(from = burnIn + 1, to = (noIts + 1) - burnIn, by = thinningFactor),]
# Calculate Effective Sample Sizes (and Per Second) and Acceptance Rates
ESS <- coda::effectiveSize(draws[,1:2])
ESS.sec <- ESS/timeTaken
acceptRate <- c(acceptTheta, acceptEU)/noIts
# = Plots =
par(mfrow = c(2,2))
# Plot Beta Samples and Sample Auto-Corrolation Function
if(is.na(lagMax)){
# Beta
plot(draws[, 1], type = 'l', ylab = expression(beta))
acf(draws[, 1], main = "")
# Gamma
plot(draws[, 2], type = 'l', ylab = expression(gamma))
acf(draws[, 2], main = "")
} else{
# Beta
plot(draws[, 1], type = 'l', ylab = expression(beta))
acf(draws[, 1], lagMax, main = "")
# Gamma
plot(draws[, 2], type = 'l', ylab = expression(gamma))
acf(draws[, 2], lagMax, main = "")
}
#' Calculating Summary Statistics for samples
betaSummary = c(mean(draws[,1]), sd(draws[,1]))
gammaSummary = c(mean(draws[,2]), sd(draws[,2]))
printed_output(rinf_dist = "Exp", no_proposals = NA, noIts, ESS, timeTaken, ESS.sec, acceptRate)
print(mean(accProbs))
print(sum(accProbs > 1))
return(list(draws = draws, acceptRate = acceptRate, ESS = ESS, ESS.sec = ESS.sec,
betaSummary = betaSummary, gammaSummary = gammaSummary, timeTaken = timeTaken))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.