########## TEST NEW SETUP #######
test_that("separate train model example", {
read_example_training_data <- system.file("extdata", "training_data.csv", package = "dreams")
training_data <- read.csv(read_example_training_data)
prepared_training_data <- prepare_training_data(training_data,
model_features = c("ref", "strand")
)
input <- prepare_input_layer(prepared_training_data$features,
ctx3_embed_dim = 3
)
NN_model <- generate_NN_structure(input$inputs,
input_layer = input$input_layer,
layers = c(8, 4, 2),
reg = 0
)
model <- fit_model(
features = prepared_training_data$features,
labels = prepared_training_data$labels,
input_structure = NN_model,
lr = 0.0005,
batch_size = 10,
epochs = 5,
model_file_path = "~/Desktop/model.test",
#log_file_path = "~/Desktop/log.test",
min_delta = 0, patience = 0, validation_split = 0.1
)
predict(
model,
prepared_training_data$features
)
})
test_that("Train model example", {
read_example_training_data <- system.file("extdata", "training_data.csv", package = "dreams")
training_data <- read.csv(read_example_training_data) %>% select(ref, obs)
training_data <- list(data = training_data)
model <- train_dreams_model(
training_data = training_data,
model_features = c("ref"),
layers = c(8, 4, 2),
lr = 0.0005,
batch_size = 10,
epochs = 5,
model_file_path = "~/Desktop/model.test",
log_file_path = "~/Desktop/log.test",
validation_split = 0.1
)
predict(
model,
training_data$data
)
})
test_that("Train model example with early stopping", {
read_example_training_data <- system.file("extdata", "training_data.csv", package = "dreams")
training_data <- read.csv(read_example_training_data) %>% select(ref, obs)
training_data <- list(data = training_data)
model <- train_dreams_model(
training_data = training_data,
model_features = c("ref"),
layers = c(8, 4, 2),
lr = 0.0005,
batch_size = 10,
epochs = 5,
model_file_path = "~/Desktop/model.test",
log_file_path = "~/Desktop/log.test",
validation_split = 0.1,
min_delta = 0.001
)
predict(
model,
training_data$data
)
})
test_that("Train model example with several feature types", {
read_example_training_data <- system.file("extdata", "training_data.csv", package = "dreams")
training_data <- read.csv(read_example_training_data) %>% select(ref, read_index, trinucleotide_ctx, obs)
training_data <- list(data = training_data)
model <- train_dreams_model(
training_data = training_data,
model_features = c("ref", "read_index", "trinucleotide_ctx"),
layers = c(8, 4, 2),
lr = 0.0005,
batch_size = 10,
epochs = 5,
model_file_path = "~/Desktop/model.test",
log_file_path = "~/Desktop/log.test",
validation_split = 0.1
)
predict(
model,
training_data$data
)
})
test_that("Train model example with one layer", {
read_example_training_data <- system.file("extdata", "training_data.csv", package = "dreams")
training_data <- read.csv(read_example_training_data) %>% select(ref, read_index, trinucleotide_ctx, obs)
training_data <- list(data = training_data)
model <- train_dreams_model(
training_data = training_data,
model_features = c("ref", "read_index", "trinucleotide_ctx"),
layers = c(8),
lr = 0.0005,
batch_size = 10,
epochs = 5,
model_file_path = "~/Desktop/model.test",
log_file_path = "~/Desktop/log.test",
validation_split = 0.1
)
predict(
model,
training_data$data
)
})
test_that("simple example", {
training_data = data.frame(ref = c("A", "A", "A", "A"),
obs = c("A", "C", "G", "T"))
training_data <- list(data = training_data)
model <- train_dreams_model(
training_data = training_data,
model_features = c("ref"),
layers = c(8, 4, 2),
lr = 0.0005,
batch_size = 4,
epochs = 5,
model_file_path = "~/Desktop/model.test",
log_file_path = "~/Desktop/log.test",
validation_split = 0
)
predict(
model,
training_data$data
)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.