#' @title
#' Plot index of abundance
#'
#' @description
#' \code{plot_biomass_index} plots an index proportional to population abundance
#'
#' @inheritParams plot_maps
#' @param DirName Directory for saving plot and table
#' @param PlotName Name for plot
#' @param interval_width width for confidence intervals
#' @param strata_names names for spatial strata
#' @param category_names names for categories (if using package \code{`VAST`})
#' @param use_biascorr Boolean, whether to use bias-corrected estimates if available
#' @param plot_legend Add legend for labelling colors
#' @param plot_log Boolean, whether to plot y-axis in log-scale
#' @param width plot width in inches
#' @param height plot height in inches
#' @param TmbData Formatted data inputs, from \code{\link[VAST]{make_data}}
#' @param ... Other inputs to `par()`
#'
#' @return Return Tagged list of output
#' \describe{
#' \item{Table}{table of index estimates by stratum and year, e.g., for including in an assessment model}
#' }
#'
#' @references For details regarding spatio-temporal index standardization see \url{https://doi.org/10.1093/icesjms/fsu243}
#' @references For details regarding fishing mortality and biomass reference points in models generating those, see \url{https://doi.org/10.1111/faf.12398}
#' @export
plot_biomass_index <-
function( fit,
DirName = getwd(),
PlotName = "Index",
interval_width = 1,
years_to_plot = NULL,
category_names = NULL,
year_labels = NULL,
strata_names = NULL,
use_biascorr = TRUE,
plot_legend = TRUE,
total_area_km2 = NULL,
plot_log = FALSE,
width = NULL,
height = NULL,
create_covariance_table = FALSE,
Yrange = c(ifelse(plot_log==TRUE,NA,0),NA),
TmbData = fit$data_list,
Sdreport = fit$parameter_estimates$SD,
extrapolation_list = fit$extrapolation_list,
... ){
# Which parameters
if( "ln_Index_ctl" %in% rownames(TMB::summary.sdreport(Sdreport)) ){
# VAST Version < 2.0.0
index_name = "Index_ctl"
log_index_name = "ln_Index_ctl"
}else if( "ln_Index_cyl" %in% rownames(TMB::summary.sdreport(Sdreport)) ){
# VAST Version >= 2.0.0
index_name = "Index_cyl"
log_index_name = "ln_Index_cyl"
TmbData[["n_t"]] = nrow(TmbData[["t_yz"]])
}else{
stop("`plot_biomass_index` is not compatible with your version")
}
# Add t_i if missing (e.g., from VAST V2.8.0 through V9.3.0)
if( !("t_i" %in% names(TmbData)) ){
TmbData$t_i = TmbData$t_iz[,1]
}
# Check and implement units and labels
fit$Report = amend_output( fit = fit,
year_labels = year_labels,
category_names = category_names,
strata_names = strata_names,
extrapolation_list = extrapolation_list )
# Informative errors
if(is.null(Sdreport)) stop("Sdreport is NULL; please provide Sdreport")
# Add in t_yz if missing (e.g., from earlier version of VAST, or SpatialDeltaGLMM)
if( !("t_yz" %in% names(TmbData)) ){
TmbData$t_yz = matrix(1:TmbData$n_t - 1, ncol=1)
}
# Fill in missing
mfrow = c( ceiling(sqrt(TmbData$n_c)), ceiling(TmbData$n_c/ceiling(sqrt(TmbData$n_c))) )
if( is.null(width)) width = mfrow[2] * 3
if( is.null(height)) height = mfrow[1] * 3
if( is.null(years_to_plot) ) years_to_plot = 1:TmbData$n_t
# Logical check
if( "unbiased"%in%names(Sdreport) ){
if( all(is.na(Sdreport$unbiased$value)) ){
stop("You appear to be using bias-correction, but all values are NA. Please report problem to package author.")
}
}
# Defaults
if( "treat_nonencounter_as_zero" %in% names(TmbData$Options_list$Options) ){
treat_missing_as_zero = TmbData$Options_list$Options["treat_nonencounter_as_zero"]
}else{
treat_missing_as_zero = FALSE
}
# Objects
# Could be moved to amend_output in future versions
SD = TMB::summary.sdreport(Sdreport)
if( !"report" %in% names(as.list(args(TMB:::as.list.sdreport))) ){
warning( "package `TMB` should be updated to easily access standard errors")
}
par_SE = TMB:::as.list.sdreport( Sdreport, what="Std. Error", report=TRUE )
par_hat = TMB:::as.list.sdreport( Sdreport, what="Estimate", report=TRUE )
if( use_biascorr==TRUE && "unbiased"%in%names(Sdreport) ){
par_biascorrect = TMB:::as.list.sdreport( Sdreport, what="Est. (bias.correct)", report=TRUE )
for( int in seq_len(length(par_hat)) ){
par_hat[[int]] = ifelse( is.na(par_biascorrect[[int]]), par_hat[[int]], par_biascorrect[[int]] )
}
}
# Fix at zeros any years-category combinations with no data
# Could be moved to amend_output in future versions ... but requires moving par_hat and par_SE to amend_output
if( treat_missing_as_zero==TRUE ){
# Determine year-category pairs with no data
Num_ctl = abind::adrop(TmbData$Options_list$metadata_ctz[,,'num_notna',drop=FALSE], drop=3) %o% rep(1,TmbData$n_l)
# Replace values with 0 (estimate) and NA (standard error)
par_hat[[index_name]] = ifelse(Num_ctl==0, 0, par_hat[[index_name]])
par_SE[[index_name]] = ifelse(Num_ctl==0, 0, par_SE[[index_name]])
par_hat[[log_index_name]] = ifelse(Num_ctl==0, 0, par_hat[[log_index_name]])
par_SE[[log_index_name]] = ifelse(Num_ctl==0, 0, par_SE[[log_index_name]])
}
# Assign units after fixing values to zero
for( int in seq_len(length(par_hat)) ){
if( names(par_hat)[int] %in% names(fit$Report) ){
dimnames(par_SE[[int]]) = dimnames(par_hat[[int]]) = dimnames(fit$Report[[names(par_hat)[int]]])
}
if("units" %in% class(fit$Report[[names(par_hat)[int]]])) units(par_hat[[int]]) = units(fit$Report[[names(par_hat)[int]]])
}
if( any(is.na(par_hat)) | any(is.na(par_SE)) ){
stop( "Problem: Standard errors contain NAs")
}
# Plot biomass and Bratio
Plot_suffix = ""
if( "Bratio_ctl" %in% names(par_hat) ) Plot_suffix = c( Plot_suffix, "-Bratio" )
for( plotI in 1:length(Plot_suffix) ){
if( Plot_suffix[plotI]=="" ){
Array_ctl = par_hat[[index_name]]
log_Array_ctl = par_SE[[log_index_name]]
}
if( Plot_suffix[plotI]=="-Bratio" ){
Array_ctl = par_hat[["Bratio_ctl"]]
log_Array_ctl = par_SE[["ln_Bratio_ctl"]]
}
plot_index( Index_ctl = Array_ctl,
sd_Index_ctl = log_Array_ctl,
years_to_plot = years_to_plot,
category_names = dimnames(Array_ctl)[[1]],
year_labels = dimnames(Array_ctl)[[2]],
strata_names = dimnames(Array_ctl)[[3]],
DirName = DirName,
PlotName = paste0(PlotName,Plot_suffix[plotI],".png"),
interval_width = interval_width,
width = width,
height = height,
xlab = "Year",
ylab = make_unit_label( u = units(Array_ctl), lab = "Index", parse = FALSE ),
scale = "log",
plot_args = list("log" = ifelse(plot_log==TRUE,"y","")),
Yrange = Yrange )
}
# Plot
if( "Fratio_ct" %in% names(par_hat) ){
Array_ct = par_hat[["Fratio_ct"]]
Array_ct = ifelse( strip_units(Array_ct)==0, NA, Array_ct )
plot_index( Index_ctl = Array_ct,
sd_Index_ctl = par_SE[["Fratio_ct"]],
years_to_plot = years_to_plot,
category_names = dimnames(Array_ctl)[[1]],
year_labels = dimnames(Array_ctl)[[2]],
strata_names = dimnames(Array_ctl)[[3]],
DirName = DirName,
PlotName = paste0(PlotName,"-Fratio.png"),
scale = "uniform",
interval_width = interval_width,
width = width,
height = height,
xlab = "Year",
ylab = "Fishing ratio" )
}
# Plot stock status
if( all(c("Fratio_ct","Bratio_ctl") %in% names(par_hat)) ){
Par = list( mar=c(2,2,1,0), mgp=c(2,0.5,0), tck=-0.02, yaxs="i", oma=c(1,2,0,0), mfrow=mfrow, ... )
Col = colorRampPalette(colors=c("blue","purple","red"))
png( file=file.path(DirName,paste0(PlotName,"-Status.png")), width=width, height=height, res=200, units="in")
par( Par )
Array1_ct = abind::abind( "Estimate"=matrix(par_hat[["Bratio_ctl"]][,,1],nrow=TmbData$n_c,dimnames=dimnames(par_hat[["Bratio_ctl"]])[1:2]), "Std. Error"=matrix(par_SE[["Bratio_ctl"]][,,1],nrow=TmbData$n_c,dimnames=dimnames(par_hat[["Bratio_ctl"]])[1:2]), along=3 )
Array1_ct = ifelse( Array1_ct==0, NA, Array1_ct )
Array2_ct = abind::abind( "Estimate"=par_hat[["Fratio_ct"]], "Std. Error"=par_SE[["Fratio_ct"]], along=3 )
Array2_ct = ifelse( Array2_ct==0, NA, Array2_ct )
for( cI in 1:TmbData$n_c ){
# Calculate y-axis limits
Xlim = c(0, max(1, Array1_ct[cI,years_to_plot,'Estimate']%o%c(1,1) + Array1_ct[cI,years_to_plot,'Std. Error']%o%c(-interval_width,interval_width),na.rm=TRUE) )
Ylim = c(0, max(2, Array2_ct[cI,years_to_plot,'Estimate']%o%c(1,1) + Array2_ct[cI,years_to_plot,'Std. Error']%o%c(-interval_width,interval_width),na.rm=TRUE) )
# Plot stuff
plot(1, type="n", xlim=Xlim, ylim=Ylim, xlab="", ylab="", main=ifelse(TmbData$n_c>1,category_names[cI],"") )
points( x=Array1_ct[cI,years_to_plot,'Estimate'], y=Array2_ct[cI,years_to_plot,'Estimate'], col=Col(dim(Array1_ct)[2])[years_to_plot] )
for( tI in years_to_plot ){
lines( x=rep(Array1_ct[cI,tI,'Estimate'],2), y=Array2_ct[cI,tI,'Estimate']+Array2_ct[cI,tI,'Std. Error']*c(-interval_width,interval_width), col=Col(dim(Array1_ct)[2])[tI] )
lines( x=Array1_ct[cI,tI,'Estimate']+Array1_ct[cI,tI,'Std. Error']*c(-interval_width,interval_width), y=rep(Array2_ct[cI,tI,'Estimate'],2), col=Col(dim(Array1_ct)[2])[tI] )
}
abline( v=0.4, lty="dotted" )
abline( h=1, lty="dotted" )
}
legend( "topright", bty="n", fill=c(Col(dim(Array1_ct)[2])[years_to_plot[1]],Col(dim(Array1_ct)[2])[rev(years_to_plot)[1]]), legend=c(dimnames(Array1_ct)[[2]][years_to_plot[1]],dimnames(Array1_ct)[[2]][rev(years_to_plot)[1]]) )
mtext( side=1:2, text=c("Biomass relative to unfished","Fishing relative to F_40%"), outer=TRUE, line=c(0,0) )
dev.off()
}
# Write to file
Table = cbind( expand.grid(dimnames(par_hat[[index_name]])),
"Units" = make_unit_label( u=units(par_hat[[index_name]]), lab="", parse=FALSE ),
"Estimate" = as.vector(par_hat[[index_name]]),
"Std. Error for Estimate" = as.vector(par_SE[[index_name]]),
"Std. Error for ln(Estimate)" = as.vector(par_SE[[log_index_name]]) )
write.csv( Table, file=file.path(DirName,"Index.csv"), row.names=FALSE)
# Return stuff
# Necessary to provide "log_Index_ctl" and "Index_ctl" for use in calculate_proportion, which has been fixed for zeros here
Return = list( "Table"=Table,
"log_Index_ctl" = abind::abind("Estimate"=par_hat[[log_index_name]], "Std. Error"=par_SE[[log_index_name]], along=4),
"Index_ctl" = abind::abind("Estimate"=par_hat[[index_name]], "Std. Error"=par_SE[[index_name]], along=4) )
# Extract and save covariance
if( "cov"%in%names(Sdreport) & create_covariance_table==TRUE ){
DF = expand.grid(dimnames(par_hat[[index_name]]))
Which = which( names(Sdreport$value)==index_name )
Cov = Sdreport$cov[Which,Which]
Corr = cov2cor(Cov) - diag(nrow(Cov))
rowcolDF = cbind( "RowNum"=row(Corr)[lower.tri(Corr,diag=TRUE)], "ColNum"=col(Corr)[lower.tri(Corr,diag=TRUE)] )
Table = cbind( DF[rowcolDF[,'ColNum'],], DF[rowcolDF[,'RowNum'],] )
colnames(Table) = paste0(colnames(Table), rep(c(1,2),each=3))
Table = cbind( Table, "Correlation"=cov2cor(Cov)[lower.tri(Corr,diag=TRUE)], "Covariance"=Cov[lower.tri(Corr,diag=TRUE)] )
Table = cbind( Table, "Index1"=Index_ctl[as.matrix(cbind(DF[rowcolDF[,'ColNum'],],1))], "Index2"=Index_ctl[as.matrix(cbind(DF[rowcolDF[,'RowNum'],],1))] )
WhichZero = which( (Table[,'Index1']*Table[,'Index2']) == 0 )
Table[WhichZero,c('Correlation','Covariance')] = 0
Return = c( Return, "Table_of_estimated_covariance"=Table )
}
#if( !is.null(Bratio_ctl)) Return = c( Return, list("Bratio_ctl"=Bratio_ctl) )
#if( !is.null(log_Bratio_ctl)) Return = c( Return, list("log_Bratio_ctl"=log_Bratio_ctl) )
#if( !is.null(Fratio_ct)) Return = c( Return, list("Fratio_ct"=Fratio_ct) )
return( invisible(Return) )
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.