# Assuming images are registered and normalized beforehand
#' RAVEL intensity normalization
#'
#' RAVEL intensity normalization.
#'
#'
#' @param input.files Vector of filenames for the input images. Must be NIfTI
#' files.
#' @param output.files Optional vector of filenames for the output images. By
#' default, will be the \code{input.files} with suffix "RAVEL".
#' @param brain.mask Filename for the brain binary mask specifying the template
#' space brain. Must be a NIfTI file.
#' @param control.mask Filename for the control region binary mask to be used
#' in RAVEL. Must be a NIfTI file.
#' @param mod Model matrix for outcome of interest and other covariates
#' @param WhiteStripe Should White Stripe intensity normalization be performed
#' prior to RAVEL?.
#' @param WhiteStripe_Type What modality is used for WhiteStripe? Should be one
#' of T1, T2 or FLAIR.
#' @param stripped Is the image skull stripped? TRUE by default.
#' @param k Number of unwanted factors to be included in the RAVEL model.
#' @param writeToDisk Should the scans be saved to the disk? FALSE by default.
#' @param returnMatrix Should the matrix of intensities be returned? TRUE by default.
#' @param verbose Should messages be printed?
#' @param ... additional arguments to pass to \code{\link{whitestripe}}
#' @return if \code{returnMatrix} is \code{FALSE}, no value returned, but
#' RAVEL-corrected images are saved. If \code{returnMatrix} is \code{TRUE},
#' RAVEL-corrected images are saved and a matrix of normalized intensities is
#' returned.
#' @author Jean-Philippe Fortin
#' @importFrom pbapply pboptions pblapply
#' @importFrom oro.nifti readNIfTI
#' @importFrom WhiteStripe whitestripe whitestripe_norm
#' @importFrom neurobase check_nifti
#' @export
normalizeRAVEL <- function(input.files,
output.files = NULL,
brain.mask = NULL,
control.mask = NULL,
mod=NULL,
WhiteStripe = TRUE,
WhiteStripe_Type = c("T1", "T2", "FLAIR"),
stripped=TRUE,
k = 1,
returnMatrix = TRUE,
writeToDisk = FALSE,
verbose = TRUE,
...
){
# RAVEL correction procedure:
if (!is.null(mod)){
message("[normalizeRAVEL] Performing RAVEL with covariates adjustment \n")
}
WhiteStripe_Type <- match.arg(WhiteStripe_Type)
if (WhiteStripe_Type == "FLAIR") {
WhiteStripe_Type <- "T2"
}
if (!verbose) {
pboptions(type = "none")
}
if (!is.null(brain.mask)) {
brain.mask = neurobase::check_nifti(brain.mask,
reorient = FALSE,
allow.array = FALSE)
brain.indices <- brain.mask == 1
} else {
stop("brain.mask must be provided.")
}
if (!is.null(control.mask)) {
control.mask = check_nifti(control.mask,
reorient = FALSE,
allow.array = FALSE)
} else {
stop("control.mask must be provided.")
}
if (verbose) {
message("[normalizeRAVEL] Creating the voxel intensities matrix V. \n")
if (WhiteStripe) {
message(
paste0(
"[normalizeRAVEL] WhiteStripe intensity normalization",
" is applied to each scan. \n"
)
)
} else {
message(
paste0(
"[normalizeRAVEL] WhiteStripe intensity normalization",
" not applied (not recommended). \n"))
}
}
# Matrix of voxel intensities:
V <- pblapply(input.files, function(x) {
brain = neurobase::check_nifti(x, reorient = FALSE,
allow.array = FALSE)
if (WhiteStripe) {
indices <- whitestripe(brain,
type = WhiteStripe_Type,
stripped=stripped,
verbose = FALSE, ...)
brain <- whitestripe_norm(brain, indices$whitestripe.ind)
}
if (!is.null(brain.mask)) {
brain <- as.vector(brain[brain.indices])
}
brain
})
V <- do.call(cbind, V)
input.files = checkimg(input.files)
if (is.null(output.files)) {
output.files <- gsub(".nii.gz|.nii", "_RAVEL.nii.gz", input.files)
}
lout = length(output.files)
lin = length(input.files)
if (lout != lin) {
warning("Length output files not the same as input files!")
}
# Submatrix of control voxels:
if (verbose)
message("[normalizeRAVEL] Creating the control voxel matrix Vc. \n")
control.indices <- control.mask == 1
control.indices <- control.indices[brain.mask == 1]
Vc <- V[control.indices, , drop = FALSE]
if (verbose) {
message("[normalizeRAVEL] Estimating the unwanted factors Z. \n")
}
Z <- svd(Vc)$v[, 1:k, drop = FALSE] # Unwanted factors
.checkDesign <- function(design, n.z){
# Check if the design is confounded
if(qr(design)$rank<ncol(design)){
if(ncol(design)>(n.z+1)){
if((qr(design[,-c(1:n.z),drop=FALSE])$rank<ncol(design[,-c(1:n.z),drop=FALSE]))){
stop('The covariates in mod are confounded. Please remove one or more of the covariates so the design is not confounded.')
} else {
stop("At least one covariate is confounded with the estimated Z components. Please remove confounded covariates and rerun RAVEL.")
}
}
}
design
}
.ravel_correction <- function(V, Z, mod=NULL) {
A <- rowMeans(V)
if (is.null(mod)){
gamma <- solve(t(Z) %*% Z) %*% t(Z) %*% t(V)
} else {
# Creating design matrix:
design <- cbind(Z,mod)
check <- apply(design, 2, function(x) all(x == 1))
design <- as.matrix(design[,!check,drop=FALSE]) #Removing intercept
n.z <- ncol(Z)
design <- .checkDesign(design, n.z)
n.covariates <- ncol(design)-n.z
# Jointly fitting gamma and beta:
gamma_beta <- solve(t(design) %*% design) %*% t(design) %*% t(V)
gamma <- gamma_beta[1:n.z,,drop=FALSE]
}
fitted <- t(Z %*% gamma)
res <- V - fitted
res <- res + A
return(res)
}
if (verbose) {
message("[normalizeRAVEL] Performing RAVEL correction \n")
}
V.norm <- .ravel_correction(V, Z, mod=mod)
if (writeToDisk) {
if (verbose) {
message("[normalizeRAVEL] Writing out the corrected images \n")
}
pblapply(1:ncol(V.norm), function(i) {
.write_brain(
brain.norm = V.norm[, i],
output.file = output.files[i],
brain.mask = brain.mask
)
})
}
if (returnMatrix) {
return(V.norm)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.