R/evalfq_spiked.R

Defines functions lfqspikedall

Documented in lfqspikedall

#' @title Conduct LFQ and assess performance by collectively considering the spiked proteins.
#' @description The ProteoLFQ enables the label-free quantification of proteomic
#' data and the performance assessment of each LFQ workflow from multiple perspectives.  Moreover, it
#' provides the unique function of ranking all possible LFQ workflows (>3,000 random combinations of
#' transformation, normalization and imputation methods) based on their performances.
#' All in all, this tool makes the performance assessment of whole LFQ workflow possible
#' (collectively assessed by five well-established criteria with distinct underlying theories) and
#' gives the ranking results of all possible workflows based on the criteria preferred and selected by the users.
#' For function definitions and descriptions please use "??ProteoLFQ" command in R.
#' @param data_s This input file should be numeric type except the first and second column containing the names and label (control or case) of the studied samples, respectively. The intensity data should be provided in this input file with the following order: samples in row and proteins/peptides in column. Missing value (NA) of protein intensity are allowed.
#' @param spiked The file should provide the concentrations of known proteins (such as spiked proteins). This file is required, if the user want to conduct assessment using criteria (e) This file should contain the class of samples and the Sample ID. The Sample ID should be unique and defined by the preference of ProteoLFQ users, and the class of samples refers to the group of Sample ID. The ID of the spiked proteins should be consistent in both “data_s" and "spiked”. Detail information are described in the online "Example".
#' @param assum_a all proteins were assumed to be equally important.The authors will be asked to input a letter “Y” to indicate the corresponding assumption is held for the studied dataset and a letter “N” to denote the opposite.
#' @param assum_b The level of protein abundance was assumed to be constant among all samples. The authors will be asked to input a letter “Y” to indicate the corresponding assumption is held for the studied dataset and a letter “N” to denote the opposite.
#' @param assum_c The intensities of the vast majority of the proteins were assumed to be unchanged under the studied conditions. The authors will be asked to input a letter “Y” to indicate the corresponding assumption is held for the studied dataset and a letter “N” to denote the opposite.
#' @param Ca Criterion (a): precision of LFQ based on the proteomes among replicates (Proteomics. 15:3140-51, 2015). If set 1, the user chooses to assess LFQ workflows using Criterion (a). If set 0, the user excludes Criterion (a) from performance assessment. The default setting of this value is “1”.
#' @param Cb Criterion (b): classification ability of LFQ between distinct sample groups (Nat Biotechnol. 28:83-9, 2010). If set 1, the user chooses to assess LFQ workflows using Criterion (b). If set 0, the user excludes Criterion (b) from performance assessment. The default setting of this value is “1”.
#' @param Cc Criterion (c): differential expression analysis by reproducibility-optimization (Nat Biotechnol. 32:896-902, 2014). If set 1, the user chooses to assess LFQ workflows using Criterion (c). If set 0, the user excludes Criterion (c) from performance assessment. The default setting of this value is “1”.
#' @param Cd Criterion (d): reproducibility of the identified protein markers among different datasets (Mol Biosyst. 11:1235-40, 2015). If set 1, the user chooses to assess LFQ workflows using Criterion (d). If set 0, the user excludes Criterion (d) from performance assessment. The default setting of this value is “1”.
#' @param Ce Criterion (e): accuracy of LFQ based on spiked and background proteins (Nat Biotechnol. 34:1130-6, 2016). If set 1, the user chooses to assess LFQ workflows using Criterion (e). If set 0, the user excludes Criterion (e) from performance assessment. The default setting of this value is “1”.
#' @return preprocessed spiked matrix
#' @import utils stats
#' @import metabolomics
#' @import affy vsn
#' @import MASS limma
#' @import ProteoMM ROTS
#' @importFrom grDevices colorRampPalette dev.off pdf
#' @useDynLib EVALFQ
#' @importFrom Rcpp sourceCpp
#' @rawNamespace import(dplyr, except=c(filter,lag,select,combine))
#' @rawNamespace import(gplots, except=lowess)
#' @importFrom pcaMethods pca
#' @importFrom pcaMethods completeObs
#' @import impute
#' @usage lfqspikedall(data_s, spiked, assum_a="Y", assum_b="Y", assum_c="Y", 
#' Ca="1", Cb="1", Cc="1", Cd="1", Ce="1")
#' @export lfqspikedall

lfqspikedall <- function(data_s, spiked, assum_a="Y", assum_b="Y", assum_c="Y", Ca="1", Cb="1", Cc="1", Cd="1", Ce="1"){
  Log2Transform<-function (inputdata,  saveoutput = FALSE, outputname = "log.results")
  {
    Group <- inputdata[, 1]
    prelog_data <- inputdata[, -1]
    log_data <- log2(prelog_data)
    outdata <- cbind(Group, log_data)
    if (saveoutput) {
      write.csv(output, paste(c(outputname, ".csv"), collapse = ""))
    }
    output <- list()
    output$output <- outdata
    output$groups <- Group
    output$samples <- row.names(inputdata)
    return(structure(output, class = "metabdata"))
  }
  #### 样本在行,特征在列
  trans <- function(data,n){
    matrix <- switch(
      n,
      Box_Cox(data),
      log2(data),
      data
    )
    return(matrix)
  }

  cents <- function(data,n){
    matrix <- switch(
      n,
      MEC(data),
      MDC(data),
      data
    )
    return(matrix)
  }

  scals<- function(data,n){
    matrix <- switch(
      n,
      1,
      AUTO1(data),
      PARETO1(data),
      VAST1(data),
      RANGE1(data)
    )
    return(matrix)
  }

  norm <- function(data,n){
    matrix <- switch(
      n,
      t(fastlo(as.matrix(data))),
      t(EIGENMS(data, label)),
      t(LOWESS(data)),
      t(SMAD(data)),
      t(MEAN(data)),
      t(MEDIAN(data)),
      t(data),
      t(PQN(data)),
      t(QUANTILE(as.matrix(data))),
      t(RLR1(data)),
      t(MSTUS(data)),
      t(TMM(data)),
      t(VSN(as.matrix(data)))
    )
    return(matrix)
  }

  impute <- function(data,n){
    matrix <- switch(
      n,
      filter_train_data,
      t(back(filter_train_data)),
      t(bpca(filter_train_data,nPcs=3)),
      t(censor(filter_train_data)),
      t(knn(filter_train_data,k=10)),
      t(svdm(filter_train_data,nPcs=3)),
      t(zero(filter_train_data))
    )
    return(matrix)
  }

  consistency <-  function(fold = 5, top = 20) {
    folds <- fold
    control.label <- control.y # variable-1
    test.fold1 <- split(sample(1:length(control.label)), 1:folds) #ignore warning
    case.label <- case.y # variable-2
    test.fold2 <- split(sample(1:length(case.label)), 1:folds) #ignore warning

    DEG <- list()
    for (i in 1:folds) {
      com.x <- cbind(control.x[, test.fold1[[i]]], case.x[, test.fold2[[i]]]) # variable-3 & 4.
      lab.ct <- test.fold1[[i]]
      lab.ca <- test.fold2[[i]]
      design <- cbind(Grp1 = 1, Grp2vs1 = c(rep(0, length(lab.ct)), rep(1, length(lab.ca))))
      fit <- limma::lmFit(com.x, design)
      fit <- limma::eBayes(fit)
      DEG[[i]] <- rownames(limma::topTable(fit, coef = 2, number = nrow(com.x)))
    }
    names(DEG) <- LETTERS[1:folds]

    top.n <-top # Extracting the top n genes.
    DEG.list <- DEG
    for (g in 1:length(DEG.list)) {
      DEG.list[[g]] <- DEG.list[[g]][1:top.n]
    }

    # Calculating consistency score:

    setlist <- DEG.list
    OLlist <- overLapper(setlist=setlist, sep="", type="vennsets")
    con.score <- 0
    VennList <- OLlist$Venn_List
    for (i in 1:length(VennList)) {
      insect.n <- nchar(names(VennList[i]))
      if (insect.n < 2) next
      num.i <- 2^(insect.n - 2) * length(VennList[[i]])
      con.score <- con.score + num.i
    }

    return(con.score) # consistense score

  }

  # Stable consistense score, with 20 repeats

  stabel.score <- function(repeats = 20, fold = 5, top = 10) {
    score <- 0
    for (r in 1:repeats) {
      score <- score + consistency(fold, top)
    }
    return(score/repeats)
  }

  #####################################################################

  iName<-c("BOX","LOG","NON")

  oName<-c("MEC","MDC","NON")

  pName<-c("NON","ATO","PAR","RAN","VAS")

  jName<-c("CYC","EIG","LOW","MAD","MEA","MED","NON","PQN","QUA","RLR","TIC","TMM","VSN")

  gName<-c("NON","BAK","BPC","CEN","KNN","SVD","ZER")

  dataa<-data_s
  rownames(dataa)<-dataa[,1]
  label<- dataa[,2]
  frame<- dataa[, -(1:2)]
  frame<-t(frame)
  frame<- data.frame(frame)
  train_data<-data.matrix(frame, rownames.force = NA)
  train_data_t<-train_data

  Fpcv<-list()
  Fscore<-list()
  Faccuracy<-list()
  Fpmad<-list()

  Fbar1num<-list()
  Fbaronummean<-list()
  Fbarosd<-list()
  Fbarorsd<-list()
  Fbaro_rsdr_to_bar1num<-list()
  spike<-list()
  backgound<-list()
  DeviationFC<-list()

  time<-0

  center <- c(1,2,3)
  scaling <- c(1,2,3,4,5)
  normalization <- c(1,2,3,4,5,6,7,8,9,10,11,12)

  cat("Assumption A: all proteins were equally important (Y/N): ", assum_a, "\n")
  cat("Assumption B: the level of protein abundance was constant among all samples (Y/N): ", assum_b, "\n")
  cat("Assumption C: the intensity of the majority of proteins were unchanged (Y/N): ", assum_c, "\n")

  if(is.na(match("Y",assum_a))){
    center<-3
    scaling<-1
  }

  if(is.na(match("Y",assum_b)) & is.na(match("Y",assum_c))) {
    normalization <- c(2,7)
  }

  if(is.na(match("Y",assum_b)) & !is.na(match("Y",assum_c))){
    normalization <- c(1,2,7,8,9,10,11)
  }

  if(!is.na(match("Y",assum_b)) & is.na(match("Y",assum_c))){
    normalization <- c(1,4,5,6,7,11)
  }


  for(i in 1:3){

    train_data_tran <- try(trans(train_data_t,i))
    
    if (inherits(train_data_tran, "try-error"))
    #if(class(train_data_tran)=="try-error")
    { next }

    if(i!=3){

      for(o in  center){

        tran_train_data<-train_data_tran
        tran_train_data[is.infinite(data.matrix(tran_train_data))]<-NA
        cen_train_data<-try(cents(tran_train_data,o))

        if (inherits(cen_train_data, "try-error"))
        #if(class(cen_train_data)=="try-error")
        { next }

        for(p in  scaling){

          scal_factor<-try(scals(tran_train_data,p))

          if (inherits(scal_factor, "try-error"))
          #if(class(scal_factor)=="try-error")
          { next }

          scal_train_data<-cen_train_data/scal_factor

          if (inherits(scal_train_data, "try-error"))
          #if(class(scal_train_data)=="try-error")
          { next }

          for(j in normalization){

            scal_train_data[is.nan(scal_train_data)]<-NA
            scal_train_data[is.infinite(scal_train_data)]<-NA
            normalized_data <- try(norm(scal_train_data,j))

            if (inherits(normalized_data, "try-error"))
            #if(class(normalized_data)=="try-error")
            { next }

            label_c<-as.factor(label)
            g1<-table(label_c)[levels(label_c)[1]]*0.8
            g2<-table(label_c)[levels(label_c)[2]]*0.8

            train_data_filtering<-try(Basicfilter(normalized_data,label,g1=2,g2=2))

            if (inherits(train_data_filtering, "try-error"))
            #if(class(train_data_filtering)=="try-error")
            { next }

            filter_train_data<-train_data_filtering

            for(g in 1:7){

              if(g==1){

                imputed_data <- filter_train_data
              }

              if(g!=1){

                imputed_data <- try(impute(filter_train_data,g))

                if (inherits(imputed_data, "try-error"))
                #if(class(imputed_data)=="try-error")
                { next }
              }

              ##### Feature Selection
              time=time+1
              dataa<-data_s
              frame<-imputed_data
              label<- dataa[,2]

              rots.out <-try(ROTS(data = t(frame), groups = as.character(label), B = 200, K = 500 , seed = 1234,log = FALSE))

              if (inherits(rots.out, "try-error"))
              #if(class(rots.out)=="try-error")
              { next }

              frame<-imputed_data
              label<-as.factor(as.character(label))
              im.data<-data.frame(label=label,frame)

              #(a) Precision of LFQ Based on the Proteomes among Replicates

              if( Ca == 1 ){

                cat(paste("Assessing" , paste(time,".",sep=""), paste(iName[i],"-",oName[o],"-",pName[p],"-", jName[j], "-",gName[g],sep=""),"Under Criteria A: Precision"),"\n")

                data<-im.data
                result <-PCV1(data)
                pcv<-sapply(1:3, function(i){round(1000*mean(as.numeric(result[,i])))/1000})[3]

                pmad <- try(mean(PMAD(data)))
                
                if (inherits(pmad, "try-error"))
                #if(class(pmad)=="try-error")
                { next }

                Fpmad[paste(i,o,p,j,g,sep="")]<-pmad

              }else{
                message("'Criteria A: Precision' cannot be evaluated, Please Check!")
              }

              #(b) Classification Ability of LFQ between Distinct Sample Groups
              if( Cb == 1 ){

                cat(paste("Assessing" , paste(time,".",sep=""), paste(iName[i],"-",oName[o],"-",pName[p],"-", jName[j], "-",gName[g],sep=""),"Under Criteria B: Classification.Ability"),"\n")

                data<-im.data
                rots.out <- rots.out
                col_pos <- which(rots.out$FDR<0.05)
                if(length(col_pos)<=10) {
                  markerid<-order(rots.out$pvalue)[1:20]
                }else {
                  markerid <- which(rots.out$FDR<0.05)+1
                }

                clusters <- hclust(dist(data[,markerid]))
                clusterCut <- cutree(clusters, 2)
                dataa<-data_s
                label<- dataa[,2]
                tmatrix<-table(clusterCut, label)
                tru<-as.numeric(data[,1])
                accuracy<-(tmatrix[1,1]+ tmatrix[2,2])/length(label)
                Faccuracy[paste(i,o,p,j,g,sep="")]<-accuracy

              }else{
                message("'Criteria B: Classification.Ability' cannot be evaluated, Please Check!")
              }

              #(c) Differential Expression Analysis Based on Reproducibility-optimization

              if( Cc == 1 ){

                cat(paste("Assessing" ,paste(time,".",sep=""), paste(iName[i],"-", oName[o],"-",pName[p],"-",jName[j], "-",gName[g],sep=""),"Under Criteria C: Differential.Expression"),"\n")

                rots.out <- rots.out

                breaks<-seq(0,1,0.05)
                sdres <- affy::hist(rots.out$pvalue,breaks=breaks)
                bar1num<-sdres$counts[1]
                baronummean<-mean(sdres$counts[-1])
                barosd<-sd(sdres$counts[-1])
                barorsd<-barosd/baronummean

                Fbar1num[paste(i,o,p,j,g,sep="")]<-bar1num
                Fbaronummean[paste(i,o,p,j,g,sep="")]<-baronummean
                Fbarosd[paste(i,o,p,j,g,sep="")]<-barosd
                Fbarorsd[paste(i,o,p,j,g,sep="")]<-barorsd
                Fbaro_rsdr_to_bar1num[paste(i,o,p,j,g,sep="")]<-barorsd/bar1num

              }else{
                message("'Criteria C: Differential.Expression' cannot be evaluated, Please Check!")
              }

              #(d) Reproducibility of the Identified Protein Markers among Different Datasets
              if( Cd == 1 && length(label) >= 20){

                cat(paste("Assessing" , paste(time,".",sep=""), paste(iName[i],"-", oName[o],"-",pName[p],"-",jName[j], "-",gName[g],sep=""),"Under Criteria D: Reproducibility"),"\n")

                test_data <- imputed_data
                label.vector <- names(table(label))
                control.x <- as.data.frame(t(test_data[label == label.vector[1], -1]))
                case.x <- as.data.frame(t(test_data[label == label.vector[2], -1]))
                control.y <- rep(0, table(label)[1])
                case.y <- rep(1, table(label)[2])

                score <- try(stabel.score(repeats = 200, fold = 5, top = 20))
                print(score)

                Fscore[paste(i,o,p,j,g,sep="")]<-score

              }else{
                message("'Criteria.D-Reproducibility' cannot be evaluated, Please Check!")
              }
              if( Ce == 1 ){

                cat(paste("Assessing" , paste(time,".",sep=""), paste(iName[i],"-",oName[i],"-",pName[i],"-", jName[j], "-",gName[g],sep=""),"Under Criteria E: Accuracy"),"\n")

                gettrueM2_1 <- spiked

                if(length(intersect(colnames(gettrueM2_1),colnames(data_s)))<2){
                  stop("Criteria E cannot performed, due to without matched  spiked protein :\n")
                }

                label1<- gettrueM2_1[,1]
                spikeddata<-gettrueM2_1[,-1]

                data0<-im.data
                if( i == 2 | j == 13){
                  data0<-data0
                }else{
                  data0<-Log2Transform(data0)$output
                }

                fc0 <- try(FoldChange(data0, paired = FALSE, plot.hist = FALSE)[,2])

                if (inherits(fc0, "try-error"))
                #if(class(fc0)=="try-error")
                { next }

                data1<-gettrueM2_1
                data1<-Log2Transform(data1)$output
                fc1 <- FoldChange(data1, paired = FALSE, plot.hist = FALSE)[,2]

                SpikeID<-match(colnames(spikeddata),names(fc0))
                if(all(is.na(SpikeID))){
                  message("Criteria E cannot performed, due to without matched spiked protein :\n")
                  { next }
                }
                SpikeID<-na.omit(SpikeID)
                EestimatedFC<-try(fc0[SpikeID])
                
                if (inherits(EestimatedFC, "try-error"))
                #if(class(EestimatedFC)=="try-error")
                { next }

                ExpectedFC<-fc1
                DifferFC<-EestimatedFC-ExpectedFC
                result_spike<-cbind("ExpectedFC logFCs"= ExpectedFC,"Quantification logFCs"= EestimatedFC,"Deviation" = DifferFC)

                backgound_protein<-fc0[-SpikeID]
                backgound[[paste(i,o,p,j,g,sep="")]]<-median(backgound_protein,na.rm=TRUE)

                DeviationFC[paste(i,o,p,j,g,sep="")]<-median(DifferFC,na.rm=TRUE)

              }

            }

          }

        }
      }

    }else{

      for(o in  3){

        tran_train_data<-train_data_tran
        tran_train_data[is.infinite(data.matrix(tran_train_data))]<-NA
        cen_train_data<-try(cents(tran_train_data,o))

        if (inherits(cen_train_data, "try-error"))
        #if(class(cen_train_data)=="try-error")
        { next }

        for(p in  1){

          scal_factor<-try(scals(tran_train_data,p))

          if (inherits(scal_factor, "try-error"))
          #if(class(scal_factor)=="try-error")
          { next }

          scal_train_data<-cen_train_data/scal_factor

          if (inherits(scal_train_data, "try-error"))
          #if(class(scal_train_data)=="try-error")
          { next }

          for(j in 13){

            scal_train_data[is.nan(scal_train_data)]<-NA
            scal_train_data[is.infinite(scal_train_data)]<-NA
            normalized_data <- try(norm(scal_train_data,j))

            if (inherits(normalized_data, "try-error"))
            #if(class(normalized_data)=="try-error")
            { next }

            label_c<-as.factor(label)
            g1<-table(label_c)[levels(label_c)[1]]*0.8
            g2<-table(label_c)[levels(label_c)[2]]*0.8

            train_data_filtering<-try(Basicfilter(normalized_data,label,g1=2,g2=2))

            if (inherits(train_data_filtering, "try-error"))
            #if(class(train_data_filtering)=="try-error")
            { next }

            filter_train_data<-train_data_filtering

            for(g in 1:7){

              if(g==1){

                imputed_data <- filter_train_data
              }

              if(g!=1){

                imputed_data <- try(impute(filter_train_data,g))

                if (inherits(imputed_data, "try-error"))
                #if(class(imputed_data)=="try-error")
                { next }
              }

              ##### Feature Selection
              time=time+1
              dataa<-data_s
              frame<-imputed_data
              label<- dataa[,2]

              rots.out <-try(ROTS(data = t(frame), groups = as.character(label), B = 200, K = 500 , seed = 1234,log = FALSE))

              if (inherits(rots.out, "try-error"))
              #if(class(rots.out)=="try-error")
              { next }

              frame<-imputed_data
              label<-as.factor(as.character(label))
              im.data<-data.frame(label=label,frame)

              #(a) Precision of LFQ Based on the Proteomes among Replicates

              if( Ca == 1 ){

                cat(paste("Assessing" , paste(time,".",sep=""), paste(iName[i],"-",oName[o],"-",pName[p],"-", jName[j], "-",gName[g],sep=""),"Under Criteria A: Precision"),"\n")

                data<-im.data
                result <-PCV1(data)
                pcv<-sapply(1:3, function(i){round(1000*mean(as.numeric(result[,i])))/1000})[3]

                pmad <- try(mean(PMAD(data)))
                
                if (inherits(pmad, "try-error"))
                #if(class(pmad)=="try-error")
                { next }

                Fpmad[paste(i,o,p,j,g,sep="")]<-pmad

              }else{
                message("'Criteria A: Precision' cannot be evaluated, Please Check!")
              }

              #(b) Classification Ability of LFQ between Distinct Sample Groups
              if( Cb == 1 ){

                cat(paste("Assessing" , paste(time,".",sep=""), paste(iName[i],"-",oName[o],"-",pName[p],"-", jName[j], "-",gName[g],sep=""),"Under Criteria B: Classification.Ability"),"\n")

                data<-im.data
                rots.out <- rots.out
                col_pos <- which(rots.out$FDR<0.05)
                if(length(col_pos)<=10) {
                  markerid<-order(rots.out$pvalue)[1:20]
                }else {
                  markerid <- which(rots.out$FDR<0.05)+1
                }

                clusters <- hclust(dist(data[,markerid]))
                clusterCut <- cutree(clusters, 2)
                dataa<-data_s
                label<- dataa[,2]
                tmatrix<-table(clusterCut, label)
                tru<-as.numeric(data[,1])
                accuracy<-(tmatrix[1,1]+ tmatrix[2,2])/length(label)
                Faccuracy[paste(i,o,p,j,g,sep="")]<-accuracy

              }else{
                message("'Criteria B: Classification.Ability' cannot be evaluated, Please Check!")
              }

              #(c) Differential Expression Analysis Based on Reproducibility-optimization

              if( Cc == 1 ){

                cat(paste("Assessing" ,paste(time,".",sep=""), paste(iName[i],"-", oName[o],"-",pName[p],"-",jName[j], "-",gName[g],sep=""),"Under Criteria C: Differential.Expression"),"\n")

                rots.out <- rots.out

                breaks<-seq(0,1,0.05)
                sdres <- affy::hist(rots.out$pvalue,breaks=breaks)
                bar1num <- sdres$counts[1]
                baronummean<-mean(sdres$counts[-1])
                barosd<-sd(sdres$counts[-1])
                barorsd<-barosd/baronummean

                Fbar1num[paste(i,o,p,j,g,sep="")]<-bar1num
                Fbaronummean[paste(i,o,p,j,g,sep="")]<-baronummean
                Fbarosd[paste(i,o,p,j,g,sep="")]<-barosd
                Fbarorsd[paste(i,o,p,j,g,sep="")]<-barorsd
                Fbaro_rsdr_to_bar1num[paste(i,o,p,j,g,sep="")]<-barorsd/bar1num

              }else{
                message("'Criteria C: Differential.Expression' cannot be evaluated, Please Check!")
              }

              #(d) Reproducibility of the Identified Protein Markers among Different Datasets
              if( Cd == 1 && length(label) >= 20){

                #dir.create(paste0("Criteria.D-Reproducibility"))

                cat(paste("Assessing" , paste(time,".",sep=""), paste(iName[i],"-", oName[o],"-",pName[p],"-",jName[j], "-",gName[g],sep=""),"Under Criteria D: Reproducibility"),"\n")

                test_data <- imputed_data
                label.vector <- names(table(label))
                control.x <- as.data.frame(t(test_data[label == label.vector[1], -1]))
                case.x <- as.data.frame(t(test_data[label == label.vector[2], -1]))
                control.y <- rep(0, table(label)[1])
                case.y <- rep(1, table(label)[2])

                score <- try(stabel.score(repeats = 200, fold = 5, top = 20))

                Fscore[paste(i,o,p,j,g,sep="")]<-score

              }else{
                message("'Criteria.D-Reproducibility' cannot be evaluated, Please Check!")
              }

              if( Ce == 1 ){

                cat(paste("Assessing" , paste(time,".",sep=""), paste(iName[i],"-",oName[i],"-",pName[i],"-", jName[j], "-",gName[g],sep=""),"Under Criteria E: Accuracy"),"\n")

                gettrueM2_1 <- spiked

                if(length(intersect(colnames(gettrueM2_1),colnames(data_s)))<2){
                  stop("Criteria E cannot performed, due to without matched  spiked protein :\n")
                }

                label1<- gettrueM2_1[,1]
                spikeddata<-gettrueM2_1[,-1]

                data0<-im.data
                if( i == 2 | j == 13){
                  data0<-data0
                }else{
                  data0<-Log2Transform(data0)$output
                }

                fc0 <- try(FoldChange(data0, paired = FALSE, plot.hist = FALSE)[,2])

                if (inherits(fc0, "try-error"))
                #if(class(fc0)=="try-error")
                { next }

                data1<-gettrueM2_1
                data1<-Log2Transform(data1)$output
                fc1 <- FoldChange(data1, paired = FALSE, plot.hist = FALSE)[,2]

                SpikeID<-match(colnames(spikeddata),names(fc0))
                if(all(is.na(SpikeID))){
                  message("Criteria E cannot performed, due to without matched spiked protein :\n")
                  { next }
                }
                SpikeID<-na.omit(SpikeID)
                EestimatedFC<-try(fc0[SpikeID])
                
                if (inherits(EestimatedFC, "try-error"))
                #if(class(EestimatedFC)=="try-error")
                { next }

                ExpectedFC<-fc1
                DifferFC<-EestimatedFC-ExpectedFC
                result_spike<-cbind("ExpectedFC logFCs"= ExpectedFC,"Quantification logFCs"= EestimatedFC,"Deviation" = DifferFC)

                backgound_protein<-fc0[-SpikeID]
                backgound[[paste(i,o,p,j,g,sep="")]]<-median(backgound_protein,na.rm=TRUE)
                DeviationFC[paste(i,o,p,j,g,sep="")]<-median(DifferFC,na.rm=TRUE)

              }

            }
          }
        }
      }
    }
  }

  #############################################
  if(!is.null(unlist(Faccuracy))){
    Acc_revison<-unlist(Faccuracy)
    Acc_revison_ID<-which(Acc_revison<0.5)
    Acc_revison[Acc_revison_ID]<-1-Acc_revison[Acc_revison_ID]
  }

  if(!is.null(unlist(backgound))){
    DeviationFC__revison<-abs(unlist(backgound))
  }
  result<-dplyr::bind_rows("Precision"=unlist(Fpmad),"Classification.Ability"=Acc_revison,"Differential.Expression"=unlist(Fbaro_rsdr_to_bar1num),"Reproducibility"=unlist(Fscore),"Accuracy"=unlist(DeviationFC__revison), .id = "id")
  result1<-t(result)
  colnames(result1)<-result1["id",]
  result2<-result1[-1,]
  result2<-data.frame(result2,check.names=FALSE)
  rownames(result2)<-names[match(rownames(result2),names[,1]),2]
  Rank<-apply(result2, 2, function(x){rank(as.numeric(as.character(x)),ties.method="min",na.last = "keep")})
  rownames(Rank)<-rownames(result2)

  if(length(grep("Reproducibility",colnames(Rank)))==1){
    Rank[,"Reproducibility"]<-rank(-as.numeric(as.character(result2[,"Reproducibility"])),ties.method="min",na.last = "keep")
  }else{
    Rank<-Rank
  }

  if(length(grep("Classification.Ability",colnames(Rank)))==1){
    Rank[,"Classification.Ability"]<- rank(-as.numeric(as.character(result2[,"Classification.Ability"])),ties.method="min",na.last = "keep")
  }else{
    Rank<-Rank
  }

  Rank_revision<-apply(Rank, 2, function(x){x[is.na(x)]<-nrow(Rank);return(x)})

  Ranksum0<-apply(Rank_revision, 1, sum)
  Rankres0<-cbind("OverallRank"=Ranksum0,Rank_revision)

  zuihou0<-cbind("Rank"=Rankres0,"Value"=result2)

  if(length(grep("Precision",colnames(result2)))==1){
    ID<-which(as.numeric(as.character(result2[,"Precision"]))>0.7)
    AA<-zuihou0[-ID,]
    AA0<-AA[order(AA[,1],decreasing = FALSE),]
    AA0[,1]<-rank(AA0[,1],ties.method="min")
    BB<-zuihou0[ID,]
    BB0<-BB[order(BB[,1],decreasing = FALSE),]
    BB0[,1]<-rank(BB0[,1],ties.method="min")+max(AA0[,1])
    zuihou2<-rbind(AA0,BB0)
  }else{
    zuihou1<-zuihou0[order(Rankres0[,"OverallRank"],decreasing = FALSE),]
    zuihou1[,1]<-rank(zuihou1[,1],ties.method="min")
    zuihou2<-zuihou1
  }
  return(zuihou2)
  ###############################################End##########################################################################
}
JianboFu0406/EVALFQ111 documentation built on Aug. 10, 2020, 1:49 p.m.