#' @title Generate Stan code and Run the estimation for ORDM
#'
#' @description
#' The StanLCDM.script Function to automate Stan code geneartion for LCDMs with binary resposnes
#'
#' @param Qmatrix the Q-matrix specified for the LCDM
#' @param save.path save the .stan file to somewhere; the default path is getwd()
#' @param save.name name the .stan
#' @return a. stan file saved at the specified path
#'
#' @author {Zhehan Jiang, University of Alabama, \email{zjiang17@@ua.edu}}
#'
#' @export
StanORDM.script<-function(Qmatrix,scale.num,save.path=getwd(),save.name="ORDM_uninf"){
nc<-ncol(Qmatrix)
nr<-nrow(Qmatrix)
temp.table.col<-unique(apply(combn(rep(c(0,1),nc),nc),2,function(x){paste(x,collapse = "")}))
temp.table.col<-temp.table.col[order(temp.table.col)]
temp.table<-matrix(0,nr,length(temp.table.col))
colnames(temp.table)<-temp.table.col
rownames(temp.table)<-paste('item',c(1:nr),sep='')
temp.table<-as.data.frame(temp.table)
for (i in 1:nr){
temp.table[i,]<-paste('l',i,'_0',sep='')
}
intercept<-temp.table[,1]
#Generate attribute combinations
comb.generator<-function(x.vector){
if(length(x.vector)>1){
temp.attr<-x.vector
temp.attr.sav<-NULL
for(i in 1:length(temp.attr)){
temp.1<-combn(temp.attr,i)
temp.2<-apply(temp.1,2,function(x){paste(x,collapse = "")})
temp.attr.sav<-c(temp.attr.sav,temp.2)
}
}
if(length(x.vector)==1){temp.attr.sav<-x.vector}
temp.attr.sav
}
#vectors needed for combination.generator
Item.load.id<-list()
for ( i in 1:nr){
Item.load.id[[i]]<-grep('1',Qmatrix[i,])}
Attr.load.id<-list()
attr.load.id<-matrix(0,length(temp.table.col),nc)
for ( i in 1:length(temp.table.col)){
attr.load.id[i,]<-unlist(strsplit(temp.table.col[i],split=''))
Attr.load.id[[i]]<-grep('1',attr.load.id[i,])
}
#Generate Combination for both Item.load and Attr.load
Item.Comb<-list()
for ( i in 1:nr){
Item.Comb[[i]]<-comb.generator(Item.load.id[[i]])
}
Attr.Comb<-list()
for ( i in 2:length(temp.table.col)){
Attr.Comb[[1]]<-0
Attr.Comb[[i]]<-comb.generator(Attr.load.id[[i]])
}
constraints.list<-list()
nway.inter.list<-list()
for(i in 1:nr){
for(a in 2:length(temp.table.col)){
ifzero<-as.numeric(paste(Item.Comb[[i]][Item.Comb[[i]]%in%(Attr.Comb[[a]])],collapse=''))
if((!is.na(ifzero))){
temp.table[i,a]<-paste(c(temp.table[i,a],
paste("S","l",i,"_",nchar(Item.Comb[[i]][Item.Comb[[i]]%in%(Attr.Comb[[a]])]),Item.Comb[[i]][Item.Comb[[i]]%in%(Attr.Comb[[a]])],sep='',collapse='')
),collapse='')
if(a==length(temp.table.col)){
nway.inter.list[[i]]<-nchar(Item.Comb[[i]][Item.Comb[[i]]%in%(Attr.Comb[[a]])])
constraints.list[[i]]<-paste("l",i,"_",nchar(Item.Comb[[i]][Item.Comb[[i]]%in%(Attr.Comb[[a]])]),Item.Comb[[i]][Item.Comb[[i]]%in%(Attr.Comb[[a]])],sep='')
}
}
}
}
#Create Lambda Table
Lamda.Table<-temp.table
for(i in 1:nr){
for(a in 1:length(Lamda.Table)){
t.ref<-unique(as.character(Lamda.Table[i,]))
pos<-c(1:length(t.ref))[Lamda.Table[i,a]==t.ref]
temp.table[i,a]<-paste("t",i,"_",pos,sep='')}}
#Generate LCDM specification
out<-list()
out[[1]]<-Lamda.Table
out[[2]]<-temp.table
out[[3]]<-constraints.list
out[[4]]<-nway.inter.list
out[[5]]<-intercept
OUTPUT<-out
nclass<-ncol(OUTPUT[[1]]);Nc<-nclass
#Produce kernel expressions across items and attributes
Kernel.exp<-OUTPUT[[1]]
for (i in 1:nrow(OUTPUT[[1]])){
for ( j in 1:ncol(OUTPUT[[1]])){
if(sum(grep('S',OUTPUT[[1]][i,j]))!=0){Kernel.exp[i,j]<-gsub('S','+',OUTPUT[[1]][i,j])}
}
}
#Monotonicity constraint in terms of the interaction terms of the item effects
Constrain.List1<-NULL
name.inter<-unlist(OUTPUT[[3]])[unlist(OUTPUT[[4]])>=2]
numway.inter<-unlist(OUTPUT[[4]])[unlist(OUTPUT[[4]])>=2]
subname.inter<-substr((unlist(OUTPUT[[3]])[unlist(OUTPUT[[4]])>=2]), (nchar(unlist(OUTPUT[[3]])[unlist(OUTPUT[[4]])>=2])-unlist(OUTPUT[[4]])[unlist(OUTPUT[[4]])>=2]+1),
nchar(unlist(OUTPUT[[3]])[unlist(OUTPUT[[4]])>=2]))
if(length(name.inter)!=0){
for (inter in 1: length(name.inter)){
temp.nw<-numway.inter[inter]
temp.nm<-name.inter[inter]
temp.subnm<-strsplit(subname.inter[inter],split='')[[1]]
temp.sel<-paste(unlist(strsplit(temp.nm,split = '_'))[1],"_",(1:(temp.nw-1)),sep='')
first.sel<-unlist(OUTPUT[[3]])[grep(paste((temp.sel),collapse="|"),unlist(OUTPUT[[3]]))]
second.sel<-sub(".*_.", "", first.sel)
for (sel in 1:length(temp.subnm)){
SEL<-second.sel[sel]
Constrain.List1<-rbind(
paste(temp.nm,">-(0", paste("+",first.sel[grep(SEL,second.sel)],
sep='',collapse=''),")",sep=''),Constrain.List1)
}
}
Constrain.List1<-as.character(Constrain.List1)
}else{
Constrain.List1<-NULL
}
itemParmName<-c(unlist(OUTPUT[[3]])[unlist(OUTPUT[[4]])==1],unlist(OUTPUT[[3]])[unlist(OUTPUT[[4]])==2],OUTPUT[[5]])
numMainEffect<-length(unlist(OUTPUT[[3]])[unlist(OUTPUT[[4]])==1])
Constrain.List<-paste(' real<lower=0>',itemParmName[1:numMainEffect],';\n ')
Unconstrain.List<-paste(' real',itemParmName[-(1:numMainEffect)],';\n ')
Reparm<-array(rep(0,nr*nclass*(scale.num)),dim = c(nr,nclass,(scale.num)))
#step parameters
StepParmName<-paste('step',1:scale.num-1,sep='')
StepParmName[1]<-0
CulStepParmName<-StepParmName
##########0529update Kernal.exp is updated to a list so that list[[?]] is a PImat for a cate
Kernel.exp.list<-list(scale.num)
for(i in 1:scale.num){
Kernel.exp.list[[i]]<-Kernel.exp
}
Kernel.exp.list.copy<-Kernel.exp.list
for(i in 1:scale.num){
for (j in 1:nr){
for( z in 1:nclass){
Kernel.exp.list[[i]][j,z]<-str_replace_all(Kernel.exp.list[[i]][j,z],Kernel.exp.list.copy[[i]][j,1],
paste(Kernel.exp.list.copy[[i]][j,1],"r",i-1,sep=''))
}
}
}
for(i in 1:scale.num){
for (j in 1:nr){
for( z in 2:nclass){
Kernel.exp.list[[i]][j,z]<-str_replace_all(Kernel.exp.list[[i]][j,z],"\\+",
paste("+",i-1,"*",sep=''))
}
}
}
Kernel.exp.list[[1]]<-0
for(loopi in 1:nr){
for( loopc in 1:nclass){
for( loops in 1:1){Reparm[loopi,loopc,loops]<-paste(' PImat[',loopi,',',loopc,'][',loops,']=0;\n',sep='')}
for( loops in 2:scale.num){
Reparm[loopi,loopc,loops]<-paste(' PImat[',loopi,',',loopc,'][',loops,']=',
paste(Kernel.exp.list[[loops]][loopi,loopc]),';\n',sep='')
}
}
}
itemParmName<-c(unlist(OUTPUT[[3]]))
for( i in 2:scale.num){
itemParmName<-c(itemParmName,c(Kernel.exp.list[[i]][,1]))
}
Unconstrain.List<-paste(' real',itemParmName[-(1:numMainEffect)],';\n ')
Modelcontainer<-paste(' vector[Nc] contributionsC;\n',' vector[Ni] contributionsI;\n\n',sep='')
Parmprior<-paste(c(paste(' //Prior\n'),paste(' ',itemParmName,'~normal(0,15)',';\n',sep=''),paste(' Vc~dirichlet(rep_vector(2.0, Nc));',sep='')))
#Likelihood Stan code
Likelihood<-'
\n
//Likelihood
for (iterp in 1:Np){
for (iterc in 1:Nc){
for (iteri in 1:Ni){
contributionsI[iteri]= categorical_lpmf(Y[iterp,iteri]| softmax(((PImat[iteri,iterc]))));
}
contributionsC[iterc]=log(Vc[iterc])+sum(contributionsI);
}
target+=log_sum_exp(contributionsC);
}
'
data.spec<-'
data{
int Np;
int Ni;
int Nc;
int Ns;
matrix[Np, Ni] Y;
}
'
parm.spec<-paste(c('
parameters{
simplex[Nc] Vc;\n ',paste0(Constrain.List),paste0(Unconstrain.List),
'}\n'),collapse='')
#Parameter Specification
parm.spec<-paste(c('parameters{
simplex[Nc] Vc;\n ',paste0(Constrain.List),paste0(Unconstrain.List),'}\n'),collapse='')
#Reparameter Specification
transparm.spec<-paste(c('transformed parameters{
vector[Ns] PImat[Ni, Nc];\n',
paste0(unlist(Reparm)),'}\n'),collapse='')
#Model Specification
model.spec<-paste(c('\nmodel {\n',paste(c(Modelcontainer,Parmprior,Likelihood),sep=''),'\n}',sep=''))
model.spec<-model.spec[!startsWith(str_remove_all(model.spec," "),"~")]
generatedQuantities.spec<-'
\n
generated quantities {
vector[Ni] log_lik[Np];
vector[Ni] contributionsI;
matrix[Ni,Nc] contributionsIC;
//Posterior
for (iterp in 1:Np){
for (iteri in 1:Ni){
for (iterc in 1:Nc){
contributionsI[iteri]= categorical_lpmf(Y[iterp,iteri]| softmax(((PImat[iteri,iterc]))));
contributionsIC[iteri,iterc]=log(Vc[iterc])+contributionsI[iteri];
}
log_lik[iterp,iteri]=log_sum_exp(contributionsIC[iteri,]);
}
}
}
'
if (.Platform$OS.type == "unix") {
filename = paste(paste(save.path,save.name,sep='/'),'.stan',sep='')
}else{
filename = paste(paste(save.path,save.name,sep='\\'),'.stan',sep='')
}
sink(file= filename,append=FALSE)
cat(
paste(c(' ',
data.spec,parm.spec,transparm.spec,model.spec,generatedQuantities.spec)
))
sink(NULL)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.