########################################################
# Need >= R ver 3.0
########################################################
if(interactive())
setwd("C:/ALL_USR/JRW/SIDT/Sablefish/Predict_NN_Ages") # Change path as needed
if(!interactive())
options(width = 120)
# --- Load the NN model - 10-20 random models each with 10-fold complete 'k-fold' models. ---
NN_Model <- 'FCNN Model/Sablefish_2017_2019_Rdm_models_22_Mar_2023_14_57_26.RData'
# --- Put new spectra scans in a separate folder and enter the name of the folder below ---
Spectra_Path <- "New_Scans"
# --- The NN predicted ages will go in the path defined below ---
Predicted_Ages_Path <- "Predicted_Ages"
dir.create(Predicted_Ages_Path, showWarnings = FALSE)
TMA_Ages <- c(TRUE, FALSE)[2]
verbose <- c(TRUE, FALSE)[1]
# --------------------------------------------------------------------------------------------------
# Sys.setenv(GITHUB_PAT = '**********') # You will need a 'GITHUB_PAT' from GitHub set somewhere in R (If you need help, search the Web how to get one from GitHub.)
# --- Conda TensorFlow environment ---
Conda_TF_Eniv <- "C:/m3/envs/tf" # Change this path as needed
if (!any(installed.packages()[, 1] %in% "R.utils"))
install.packages("R.utils")
if (!any(installed.packages()[, 1] %in% "ggplot2"))
install.packages("ggplot2")
if (!any(installed.packages()[, 1] %in% "plotly"))
install.packages("plotly")
if (!any(installed.packages()[, 1] %in% "tensorflow"))
install.packages("tensorflow")
if (!any(installed.packages()[, 1] %in% "keras"))
install.packages("keras")
library(R.utils)
library(ggplot2)
library(plotly)
library(tensorflow)
library(keras)
Sys.setenv(RETICULATE_PYTHON = Conda_TF_Eniv)
Sys.getenv("RETICULATE_PYTHON")
# --- TensorFlow Load and Math Check ---
a <- tf$Variable(5.56)
cat("\n\nTensorFlow Math Check\n\na = "); print(a)
b <- tf$Variable(2.7)
cat("\nb = "); print(b)
cat("\na + b = "); print(a + b)
cat("\n\n")
# --- Pause here when submitting code to R ---
k_clear_session()
# --- Download functions from GitHub ---
sourceFunctionURL <- function (URL, type = c("function", "script")[1]) {
" # For more functionality, see gitAFile() in the rgit package ( https://github.com/John-R-Wallace-NOAA/rgit ) which includes gitPush() and git() "
if (!any(installed.packages()[, 1] %in% "httr")) install.packages("httr")
File.ASCII <- tempfile()
if(type == "function")
on.exit(file.remove(File.ASCII))
getTMP <- httr::GET(gsub(' ', '%20', URL))
if(type == "function") {
write(paste(readLines(textConnection(httr::content(getTMP))), collapse = "\n"), File.ASCII)
source(File.ASCII)
}
if(type == "script") {
fileName <- strsplit(URL, "/")[[1]]
fileName <- rev(fileName)[1]
write(paste(readLines(textConnection(httr::content(getTMP))), collapse = "\n"), fileName)
}
}
sourceFunctionURL("https://raw.githubusercontent.com/John-R-Wallace-NOAA/JRWToolBox/master/R/Date.R")
sourceFunctionURL("https://raw.githubusercontent.com/John-R-Wallace-NOAA/JRWToolBox/master/R/sort.f.R")
sourceFunctionURL("https://raw.githubusercontent.com/John-R-Wallace-NOAA/JRWToolBox/master/R/get.subs.R")
sourceFunctionURL("https://raw.githubusercontent.com/John-R-Wallace-NOAA/JRWToolBox/master/R/extractRData.R")
sourceFunctionURL("https://raw.githubusercontent.com/John-R-Wallace-NOAA/JRWToolBox/master/R/saveHtmlFolder.R")
sourceFunctionURL("https://raw.githubusercontent.com/John-R-Wallace-NOAA/FishNIRS/master/R/Predict_NN_Age.R")
# ---- Note if you get this error: < Error in `[.data.frame`(data.frame(prospectr::savitzkyGolay(newScans.RAW, : undefined columns selected > or you know that
# the new spectra scan(s) do not have the same freq. as the model expects, then add the file 'FCNN\PACIFIC_HAKE_AAA_Correct_Scan_Freq' to your scans and an interpolation will be done. ---
# --- Use Predict_NN_Age() to find the NN predicted ages ---
fileNames <- dir(path = Spectra_Path)
Year <- apply(matrix(fileNames, ncol = 1), 1, function(x) substr(get.subs(x, sep = "_")[2], 6, 9))
# New_Ages <- Predict_NN_Age(Conda_TF_Eniv, Spectra_Path, NN_Model, plot = TRUE, NumRdmModels = 1, htmlPlotFolder = paste0(Predicted_Ages_Path, '/Spectra Figure for New Ages'), shortNameSegments = c(1,3), shortNameSuffix = Year, N_Samp = 200) # One random model for faster testing
New_Ages <- Predict_NN_Age(Conda_TF_Eniv, Spectra_Path, NN_Model, plot = TRUE, htmlPlotFolder = paste0(Predicted_Ages_Path, '/Spectra Figure for New Ages'), shortNameSegments = c(1,3), shortNameSuffix = Year, N_Samp = 200, verbose = verbose) # Use the max number of random model replicates available
# New_Ages <- Predict_NN_Age(Conda_TF_Eniv, Spectra_Path, NN_Model, plot = TRUE, htmlPlotFolder = paste0(Predicted_Ages_Path, '/Spectra Figure for New Ages'), shortNameSegments = c(1,3), shortNameSuffix = Year, N_Samp = 'All') # Plot all scans using: N_Samp = 'All'
# --- Save() ages and write out to a CSV file ---
save(New_Ages, file = paste0(Predicted_Ages_Path, '/NN Predicted Ages, ', Date(" "), '.RData'))
write.csv(New_Ages, file = paste0(Predicted_Ages_Path, '/NN Predicted Ages, ', Date(" "), '.csv'), row.names = FALSE)
# --- Create plots with age estimates and quantile credible intervals ---
New_Ages <- data.frame(Index = 1:nrow(New_Ages), New_Ages) # Add 'Index' as the first column in the data frame
print(New_Ages[1:5, ])
Delta <- extractRData('roundingDelta', file = NN_Model) # e.g. the rounding Delta for 2019 Hake is zero.
New_Ages$Age_Rounded <- round(New_Ages$NN_Pred_Median + Delta)
New_Ages$Rounded_Age <- factor(" ")
cat(paste0("\n\nUsing a rounding Delta of ", Delta, "\n\n"))
# - Plot by order implied by the spectra file names -
g <- ggplotly(ggplot(New_Ages, aes(Index, NN_Pred_Median)) +
geom_point() +
geom_errorbar(aes(ymin = Lower_Quantile_0.025, ymax = Upper_Quantile_0.975)) +
geom_point(aes(Index, Age_Rounded, color = Rounded_Age)) + scale_color_manual(values = c(" " = "green")), dynamicTicks = TRUE)
print(g)
saveHtmlFolder(paste0(Predicted_Ages_Path, '/Predicted_Ages_Order_by_File_Names'), view = !interactive())
Sys.sleep(3)
# - Plot by sorted NN predicted ages -
New_Ages_Sorted <- sort.f(New_Ages, 'NN_Pred_Median') # Sort 'New_ages' by 'NN_Pred_Median', except for "Index" (see the next line below)
New_Ages_Sorted$Index <- sort(New_Ages_Sorted$Index) # Reset Index for graphing
print(New_Ages_Sorted[1:5, ])
g <- ggplotly(ggplot(New_Ages_Sorted, aes(Index, NN_Pred_Median)) +
geom_point() +
geom_errorbar(aes(ymin = Lower_Quantile_0.025, ymax = Upper_Quantile_0.975)) +
geom_point(aes(Index, Age_Rounded, color = Rounded_Age)) + scale_color_manual(values = c(" " = "green")), dynamicTicks = TRUE)
print(g)
saveHtmlFolder(paste0(Predicted_Ages_Path, '/Predicted_Ages_Sorted'), view = !interactive())
# --- Check against TMA ages, if available ---
if(TMA_Ages) {
sourceFunctionURL("https://raw.githubusercontent.com/John-R-Wallace-NOAA/JRWToolBox/master/R/load.R")
sourceFunctionURL("https://raw.githubusercontent.com/John-R-Wallace-NOAA/JRWToolBox/master/R/match.f.R")
sourceFunctionURL("https://raw.githubusercontent.com/John-R-Wallace-NOAA/FishNIRS/master/R/agreementFigure.R")
# load("C:/ALL_USR/JRW/SIDT/Sablefish/Predict NN Ages/Predicted_Ages/NN Predicted Ages, 12 Oct 2023.RData", str = verbose) # If re-loading - change the date in the file name as needed
# if(verbose & !interactive()) Sys.sleep(3)
# NN_Model <- 'FCNN Model/Sablefish_2017_2019_Rdm_models_22_Mar_2023_14_57_26.RData'
# Delta <- extractRData('roundingDelta', file = NN_Model)
# Predicted_Ages_Path <- "Predicted_Ages"
load("C:/ALL_USR/JRW/SIDT/Sablefish/Keras_CNN_Models/Sable_2017_2019 21 Nov 2022.RData", str = verbose)
if(verbose & !interactive()) Sys.sleep(3)
New_Ages$Age_Rounded <- round(New_Ages$NN_Pred_Median + Delta)
New_Ages$Rounded_Age <- factor(" ")
New_Ages$TMA <- NULL # Clear old TMA before updating
New_Ages <- match.f(New_Ages, Sable_2017_2019, 'filenames', 'filenames', 'TMA') # Change as needed
g <- ggplotly(ggplot(New_Ages, aes(TMA, NN_Pred_Median)) +
geom_point() +
geom_errorbar(aes(ymin = Lower_Quantile_0.025, ymax = Upper_Quantile_0.975)) +
geom_point(aes(TMA, Age_Rounded, color = Rounded_Age)) + scale_color_manual(values = c(" " = "green")), dynamicTicks = TRUE)
print(g)
saveHtmlFolder(paste0(Predicted_Ages_Path, '/TMA vs Predicted_Ages'), view = !interactive())
# pdf(width = 16, height = 10, file = paste0(Predicted_Ages_Path, '/Agreement_Figure.png'))
png(width = 16, height = 10, units = 'in', res = 600, file = paste0(Predicted_Ages_Path, '/Agreement_Figure.png'))
agreementFigure(New_Ages$TMA, New_Ages$NN_Pred_Median, Delta = Delta, full = TRUE)
dev.off()
browseURL(paste0(getwd(), "/", Predicted_Ages_Path, '/Agreement_Figure.png'), browser = "C:/Program Files (x86)/Google/Chrome/Application/chrome.exe")
}
# # --- Find bad scans ---
# for ( i in fileNames) {
# print(i)
# try(newScans.RAW <- opusreader::opus_read(paste(Spectra_Path, i , sep = "/"), simplify = TRUE, wns_digits = 0)[[2]] )
# }
#
#
# # Bad scans for Sablefish 2017: 505, 506, 507, 509, 511-514, 516-518, 520-522, 525, 527, 529-533, 535-538
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.