#' GPD Return Level Estimate and Confidence Interval for Stationary Models
#'
#' Computes stationary m-period return level estimate and interval for the Generalized Pareto distribution,
#' using either the delta method or profile likelihood.
#'
#' WARNING : method = profile currently does not work and will error
#'
#' @param z An object of class `gpd.fit'.
#' @param period The number of periods to use for the return level.
#' @param conf Confidence level. Defaults to 95 percent.
#' @param method The method to compute the confidence interval - either delta method (default) or profile likelihood.
#' @param plot Plot the profile likelihood and estimate (vertical line)?
#' @param opt Optimization method to maximize the profile likelihood if that is selected. Argument passed to optim. The
#' default method is Nelder-Mead.
#'
#' @references Coles, S. (2001). An introduction to statistical modeling of extreme values (Vol. 208). London: Springer.
#' @examples
#' x = rgpd(5000, loc = 0, scale = 1, shape = -0.1)
#' ## Compute 50-period return level.
#' z = gpd.fit(x, nextremes = 200)
#' gpd.rl(z, period = 50, method = "delta")
#' gpd.rl(z, period = 50, method = "delta")
#' @return
#' \item{Estimate}{Estimated m-period return level.}
#' \item{CI}{Confidence interval for the m-period return level.}
#' \item{Period}{The period length used.}
#' \item{ConfLevel}{The confidence level used.}
#' @details Caution: The profile likelihood optimization may be slow for large datasets.
#' @export
gpd.rl = function(z, period, conf = .95, method = c("delta", "profile"), plot = TRUE, opt = c("Nelder-Mead")) {
if(!z$stationary)
stop("Return levels can only be produced for the stationary model!")
method = match.arg(method)
m = period * z$npp
est = z$threshold + (z$par.ests[1] / z$par.ests[2]) * ((m * z$rate)^z$par.ests[2] - 1)
est = as.numeric(est)
if(method == "delta") {
cov = matrix(0, 3, 3)
cov[2:3, 2:3] = z$varcov
cov[1, 1] = (z$rate * (1 - z$rate)) / z$n
del = matrix(0, 3, 1)
del[1, 1] = z$par.ests[1] * (m^z$par.ests[2]) * (z$rate^(z$par.ests[2] - 1))
del[2, 1] = (1 / z$par.ests[2]) * ((m * z$rate)^z$par.ests[2] - 1)
del[3, 1] = (-z$par.ests[1] / (z$par.ests[2]^2)) * ((m * z$rate)^z$par.ests[2] - 1) +
(z$par.ests[1] / z$par.ests[2]) * ((m * z$rate)^z$par.ests[2]) * log(m * z$rate)
se = sqrt(t(del) %*% cov %*% del)
se = as.vector(se)
alpha = (1 - conf) / 2
lower = est - qnorm(1-alpha)*se
upper = est + qnorm(1-alpha)*se
CI = as.numeric(c(lower, upper))
} else {
opt = match.arg(opt)
sol = z$par.ests[2]
gpd.lik = function(shape, xp) {
if(shape == 0) {
scale = (xp - z$threshold) / log(m * z$rate)
} else {
scale = ((xp - z$threshold) * shape) / ((m * z$rate)^shape - 1)
}
if(scale <= 0) {
out = .Machine$double.xmax
} else {
out = dgpd(z$data[z$data > z$threshold], loc = z$threshold, scale = scale, shape = shape, log.d = TRUE)
out = - sum(out)
if(out == Inf)
out = .Machine$double.xmax
}
out
}
cutoff = qchisq(conf, 1)
prof <- function(xp) {
lmax = dgpd(z$data[z$data > z$threshold], loc = z$threshold, scale = z$par.ests[1], shape = z$par.ests[2], log.d = TRUE)
lmax = sum(lmax)
yes = optim(sol, gpd.lik, method = opt, xp = xp)
sol = yes$par
lci = -yes$value
return(2*(lmax-lci) - cutoff)
}
# idk why these have to be arrows, but they do
prof <- Vectorize(prof)
suppressWarnings(out1 <- uniroot(prof, c(est - 1e-6, est)))
suppressWarnings(out2 <- uniroot(prof, c(est, est + 1e-6)))
CI = c(min(out1$root, out2$root), max(out1$root, out2$root))
if(plot) {
prof1 = function(xp) {- prof(xp)}
suppressWarnings(curve(prof1, from = CI[1], to = CI[2], n = 50, xlab = 'Return Level', ylab = 'LRT - Cutoff'))
abline(v = est, col = "blue")
}
}
out = list(est, CI, period, conf)
names(out) = c("Estimate", "CI", "Period", "ConfLevel")
out
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.