#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# Functions
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#' L2 normalize the columns (or rows) of a given matrix
#' @param mat Matrix to cosine normalize
#' @param MARGIN Perform normalization over rows (1) or columns (2)
#'
#'
#' @return returns l2-normalized matrix
#'
#'
L2Norm <- function(mat, MARGIN = 1){
normalized <- sweep(
x = mat,
MARGIN = MARGIN,
STATS = apply(
X = mat,
MARGIN = MARGIN,
FUN = function(x){
sqrt(x = sum(x ^ 2))
}
),
FUN = "/"
)
normalized[!is.finite(x = normalized)] <- 0
return(normalized)
}
#' Normalize the columns of a given matrix
#' @param mat Matrix to normalize
#'
#' @return returns column-normalized matrix
#'
#'
colScale <- function(X){
X <- scale(X, TRUE, apply(X,2,sd))
return(X)
}
#' Normalize the rows of a given matrix
#' @param mat Matrix to normalize
#'
#' @return returns row-normalized matrix
#'
#'
rowScale <- function(X){
tp <- t(X)
tp <- scale(tp, TRUE, apply(tp,2,sd))
X <- t(tp)
return(X)
}
FeatureScale <- function(X){
for(i in seq(1, dim(X)[1],1)){
X[i,] <- X[i,] - mean(X[i,])
X[i,] <- X[i,]/sd(X[i,])
}
return(X)
}
#' Matrix Crossproduct
#' Given a list of matrices x1, x2, ... , xn as arguments, return a matrix cross-product.
#' x1%*%x2%*%xn
#' @param lst list of matrix
#'
#' @return returns crossproduct
#'
#'
is.sparseMatrix <- function(x) is(x, 'sparseMatrix')
paraSel_plot <- function(dt = NULL){
dt <- as.data.frame(dt)
p1 <- ggplot( dt, aes(x=alpha, y = lambda, fill=alignment )) + scale_fill_gradient(low="white", high="blue") + geom_tile() + theme_classic()
p2 <- ggplot( dt, aes(x=alpha, y = lambda, fill=silhouette1)) + scale_fill_gradient(low="white", high="blue") + geom_tile() + theme_classic()
p3 <- ggplot( dt, aes(x=alpha, y = lambda, fill=silhouette2)) + scale_fill_gradient(low="white", high="blue") + geom_tile() + theme_classic()
#p4 <- ggplot( dt, aes(x=alpha, y = lambda, fill=cost_all)) + scale_fill_gradient(low="white", high="blue") + geom_tile() + theme_classic()
p <- ggarrange(p2, p3, p1, ncol=3, nrow=1)
return(p)
}
score_plot <- function(dt = NULL){
dt<-data.frame(dt)
#dt$silhouette1 <- (dt$silhouette1 - min(dt$silhouette1))/(max(dt$silhouette1)-min(dt$silhouette1))
#dt$silhouette2 <- (dt$silhouette2 - min(dt$silhouette2))/(max(dt$silhouette2)-min(dt$silhouette2))
#dt$alignment <- (dt$alignment - min(dt$alignment))/(max(dt$alignment)-min(dt$alignment))
p <- ggplot() + xlab("alpha") + ylab("score") +
geom_point(data= dt, aes(x=alpha,y = silhouette1, colour = "darkred")) +
geom_point(data=dt, aes(x=alpha,y = silhouette2, colour="steelblue")) +
geom_point(data=dt, aes(x=alpha,y = alignment, colour="green")) +
geom_line(data= dt, aes(x=alpha,y = silhouette1, colour = "darkred")) +
geom_line(data=dt, aes(x=alpha,y = silhouette2, colour="steelblue")) +
geom_line(data=dt, aes(x=alpha,y = alignment, colour="green")) +
scale_color_discrete(name = "score",
labels = c("silhouette (A)","alignment", "silhouette (B)")) + theme_bw()
return(p)
}
runUMAP <- function(x=NULL){
tmp <- umap(x)
return(tmp$layout)
}
PC_optimize <- function(x=NULL){
x <- x/dim(x)[2]
y <- crossprod_e(x,x)
dim_max <- min(c(dim(x)[1], dim(x)[2]))
dim_max <- min(c(500, dim_max-1))
SVD <- irlba(y, nv = dim_max)
p_value <- rep(1, dim(SVD$u)[2])
FLAG <- TRUE
k <- 0
for(i in seq(1, dim(SVD$u)[2],1)){
p_value[i] <- ad.test(SVD$u[,i])$p.value
if(p_value[i]>0.1 && FLAG){
k <- i
FLAG = FALSE
}
}
# identify dimension used
dim <- (as.integer(k/5) + 1)*5
out <- c()
out$p_value <- p_value[1:dim]
out$k <- dim
out$u <- SVD$u[,1:dim]
plt <- data.frame("PC"=1:5, "pvalue"=0-log10(out$p_value))
#out$plot <- ggscatter(plt, x="PC", y="pvalue", ylab = "-log10(pvalue)",
# size=2, alpha=1, font.title=16) +
# geom_hline(yintercept = 1, linetype = 2,color="red")
return(out)
}
UMAP_plot <- function(meta = NULL, color=NULL, xlim=NULL, alpha = 0.1,
ylim=NULL, showLabel=TRUE, title=NULL, mylabel=NULL){
library(ggrepel)
#meta <- x@meta
dt <- data.frame("UMAP1" = meta[,"UMAP1"], "UMAP2" = meta[,"UMAP2"], label=meta[,color])
dt$label <- as.factor(dt$label)
x_min <- xlim[1]
x_max <- xlim[2]
y_min <- ylim[1]
y_max <- ylim[2]
label_pos<-aggregate(. ~ label, dt, median)
p1 <- ggplot(dt, aes(x = UMAP1, y = UMAP2, color = label)) +
geom_point(alpha = alpha, size =0.5) +
scale_colour_manual(values = mylabel) +
xlim(x_min, x_max) +
ylim(y_min, y_max) +
theme_classic() + theme(legend.position = "none") +
geom_text_repel(data = label_pos, repel = TRUE,
aes(label = label), color="black", fontface="bold",
alpha = 0.75,box.padding = 0.5, point.padding = 0.1) +
theme(legend.position = "none") + theme(axis.text=element_blank(), axis.title=element_blank(),
axis.ticks=element_blank())
return(p1)
}
plotIteration <- function(x = NULL){
dt<-data.frame("iter"=seq(1, length(x$cost_l),1),
"cost_left" = x$cost_l,
"cost_right" = x$cost_r,
"cost_z0" = x$cost_z0,
"cost_all" = x$cost_all,
"delta" = x$delta
)
p1 <- ggplot(dt, aes(x = iter, y = cost_left, color = "#00AFBB")) + geom_point() +
xlab("Iteration time") + ylab("obj. on left CCA") + theme_classic()
p2 <- ggplot(dt, aes(x = iter, y = cost_right, color = "#00AFBB")) + geom_point() +
xlab("Iteration time") + ylab("obj. on right CCA") + theme_classic()
p3 <- ggplot(dt, aes(x = iter, y = cost_z0, color = "#00AFBB")) + geom_point() +
xlab("Iteration time") + ylab("obj. on ||Z-Z0||") + theme_classic()
p4 <- ggplot(dt, aes(x = iter, y = cost_right, color = "#00AFBB")) + geom_point() +
xlab("Iteration time") + ylab("obj. on all three terms") + theme_classic()
p5 <- ggplot(dt, aes(x = iter, y = delta, color = "#00AFBB")) + geom_point() +
xlab("Iteration time") + ylab("Relative change of Z") + theme_classic()
p <- ggarrange(p1, p2, p3, p4, p5 ,nrow = 2, ncol=3)
return(p)
}
celltype_assign <- function(train_x=NULL, train_y = NULL, test = NULL, test_clst = NULL){
res <- list()
clst_num <- length(unique(train_y))
n <- Entropy(rep(1, clst_num)/clst_num)
train <- svm(train_x, as.factor(train_y), probability = TRUE)
b5 <- predict(train, test ,probability = TRUE)
b5 <- attr(b5, "probabilities")
res$prob <- b5
res$clst <- test_clst
res$score <- aggregate(. ~clst, res, mean)
res$alignment <- calcEntropy(res$score)
#print(res$score)
return(res)
}
calcEntropy<-function(x=NULL){
y<-matrix(0, nrow(x),1)
for(i in seq(1,nrow(x),1)){
y[i] <- Entropy(x[i, seq(2, ncol(x),1)])
}
return(y)
}
calc_silhouette_coef<-function(x = NULL, clst = NULL){
#dt$cluster<-as.character(dt$cluster)
clst <- as.numeric(as.factor(clst))
out<-silhouette(clst, dist(x))
return(out)
}
calc_alignment_score<-function(x = NULL, clst = NULL, k = NULL){
#colnames(x)[n] <- "cluster"
out<-get.knn(x, k= k)
tp<-out$nn.index
alignment<-rep(0,dim(x)[1])
for(i in seq(1,dim(tp)[1],1)){
flag<- clst[tp[i,]]
alignment[i]<-Entropy(table(flag), base=exp(1))
}
return(alignment)
}
##########################################################################################
# Plot Aesthetics Objects and Methods
##########################################################################################
#' List of color palettes that can be used in plots
#'
#' A collection of some original and some borrowed color palettes to provide appealing color aesthetics for plots in ArchR
#'
#' @export
bindSCPalettes <- list(
#DISCLOSURE: This is a collection of palettes that includes some original palettes and some palettes originally
#implemented by others in other packages.
#They are included here for convenience because they help improve plot aesthetics.
#NOTE: all palettes included in the "Primarily Continuous Palettes" section should also work for discrete usage but not vice versa.
#Each continuous palette has been ordered by color to generate a visually appealing discrete palette.
#---------------------------------------------------------------
# Primarily Discrete Palettes
#---------------------------------------------------------------
#20-colors
stallion = c("1"="#D51F26","2"="#272E6A","3"="#208A42","4"="#89288F","5"="#F47D2B", "6"="#FEE500","7"="#8A9FD1","8"="#C06CAB","19"="#E6C2DC",
"10"="#90D5E4", "11"="#89C75F","12"="#F37B7D","13"="#9983BD","14"="#D24B27","15"="#3BBCA8", "16"="#6E4B9E","17"="#0C727C", "18"="#7E1416","9"="#D8A767","20"="#3D3D3D"),
stallion2 = c("1"="#D51F26","2"="#272E6A","3"="#208A42","4"="#89288F","5"="#F47D2B", "6"="#FEE500","7"="#8A9FD1","8"="#C06CAB","19"="#E6C2DC",
"10"="#90D5E4", "11"="#89C75F","12"="#F37B7D","13"="#9983BD","14"="#D24B27","15"="#3BBCA8", "16"="#6E4B9E","17"="#0C727C", "18"="#7E1416","9"="#D8A767"),
calm = c("1"="#7DD06F", "2"="#844081", "3"="#688EC1", "4"="#C17E73", "5"="#484125", "6"="#6CD3A7", "7"="#597873","8"="#7B6FD0", "9"="#CF4A31", "10"="#D0CD47",
"11"="#722A2D", "12"="#CBC594", "13"="#D19EC4", "14"="#5A7E36", "15"="#D4477D", "16"="#403552", "17"="#76D73C", "18"="#96CED5", "19"="#CE54D1", "20"="#C48736"),
kelly = c("1"="#FFB300", "2"="#803E75", "3"="#FF6800", "4"="#A6BDD7", "5"="#C10020", "6"="#CEA262", "7"="#817066", "8"="#007D34", "9"="#F6768E", "10"="#00538A",
"11"="#FF7A5C", "12"="#53377A", "13"="#FF8E00", "14"="#B32851", "15"="#F4C800", "16"="#7F180D", "17"="#93AA00", "18"="#593315", "19"="#F13A13", "20"="#232C16"),
#16-colors
bear = c("1"="#faa818", "2"="#41a30d","3"="#fbdf72", "4"="#367d7d", "5"="#d33502", "6"="#6ebcbc", "7"="#37526d",
"8"="#916848", "9"="#f5b390", "10"="#342739", "11"="#bed678","12"="#a6d9ee", "13"="#0d74b6",
"14"="#60824f","15"="#725ca5", "16"="#e0598b"),
#15-colors
ironMan = c("9"='#371377',"3"='#7700FF',"2"='#9E0142',"10"='#FF0080', "14"='#DC494C',"12"="#F88D51","1"="#FAD510","8"="#FFFF5F","4"='#88CFA4',
"13"='#238B45',"5"="#02401B", "7"="#0AD7D3","11"="#046C9A", "6"="#A2A475", "15"='grey35'),
circus = c("1"="#D52126", "2"="#88CCEE", "3"="#FEE52C", "4"="#117733", "5"="#CC61B0", "6"="#99C945", "7"="#2F8AC4", "8"="#332288",
"9"="#E68316", "10"="#661101", "11"="#F97B72", "12"="#DDCC77", "13"="#11A579", "14"="#89288F", "15"="#E73F74"),
#12-colors
paired = c("9"="#A6CDE2","1"="#1E78B4","3"="#74C476","12"="#34A047","11"="#F59899","2"="#E11E26",
"10"="#FCBF6E","4"="#F47E1F","5"="#CAB2D6","8"="#6A3E98","6"="#FAF39B","7"="#B15928"),
#11-colors
grove = c("11"="#1a1334","9"="#01545a","1"="#017351","6"="#03c383","8"="#aad962","2"="#fbbf45","10"="#ef6a32","3"="#ed0345","7"="#a12a5e","5"="#710162","4"="#3B9AB2"),
#7-colors
summerNight = c("1"="#2a7185", "2"="#a64027", "3"="#fbdf72","4"="#60824f","5"="#9cdff0","6"="#022336","7"="#725ca5"),
#5-colors
zissou = c("1"="#3B9AB2", "4"="#78B7C5", "3"="#EBCC2A", "5"="#E1AF00", "2"="#F21A00"), #wesanderson
darjeeling = c("1"="#FF0000", "2"="#00A08A", "3"="#F2AD00", "4"="#F98400", "5"="#5BBCD6"), #wesanderson
rushmore = c("1"="#E1BD6D", "5"="#EABE94", "2"="#0B775E", "4"="#35274A" , "3"="#F2300F"), #wesanderson
captain = c("1"="grey","2"="#A1CDE1","3"="#12477C","4"="#EC9274","5"="#67001E"),
#---------------------------------------------------------------
# Primarily Continuous Palettes
#---------------------------------------------------------------
#10-colors
horizon = c("1"='#000075',"4"='#2E00FF', "6"='#9408F7', "10"='#C729D6', "8"='#FA4AB5', "3"='#FF6A95', "7"='#FF8B74', "5"='#FFAC53', "9"='#FFCD32', "2"='#FFFF60'),
#9-colors
horizonExtra =c("1"="#000436","4"="#021EA9","6"="#1632FB","8"="#6E34FC","3"="#C732D5","9"="#FD619D","7"="#FF9965","5"="#FFD32B","2"="#FFFC5A"),
blueYellow = c("1"="#352A86","2"="#343DAE","3"="#0262E0","4"="#1389D2","5"="#2DB7A3","6"="#A5BE6A","7"="#F8BA43","8"="#F6DA23","9"="#F8FA0D"),
sambaNight = c("6"='#1873CC',"2"='#1798E5',"8"='#00BFFF',"5"='#4AC596',"1"='#00CC00',"4"='#A2E700',"9"='#FFFF00',"7"='#FFD200',"3"='#FFA500'), #buencolors
solarExtra = c("5"='#3361A5', "7"='#248AF3', "1"='#14B3FF', "8"='#88CEEF', "9"='#C1D5DC', "4"='#EAD397', "3"='#FDB31A',"2"= '#E42A2A', "6"='#A31D1D'), #buencolors
whitePurple = c("9"='#f7fcfd',"6"='#e0ecf4',"8"='#bfd3e6',"5"='#9ebcda',"2"='#8c96c6',"4"='#8c6bb1',"7"='#88419d',"3"='#810f7c',"1"='#4d004b'),
whiteBlue = c("9"='#fff7fb',"6"='#ece7f2',"8"='#d0d1e6',"5"='#a6bddb',"2"='#74a9cf',"4"='#3690c0',"7"='#0570b0',"3"='#045a8d',"1"='#023858'),
whiteRed = c("1"="white", "2"="red"),
comet = c("1"="#E6E7E8","2"="#3A97FF","3"="#8816A7","4"="black"),
#7-colors
greenBlue = c("4"='#e0f3db',"7"='#ccebc5',"2"='#a8ddb5',"5"='#4eb3d3',"3"='#2b8cbe',"6"='#0868ac',"1"='#084081'),
#6-colors
beach = c("4"="#87D2DB","1"="#5BB1CB","6"="#4F66AF","3"="#F15F30","5"="#F7962E","2"="#FCEE2B"),
#5-colors
coolwarm = c("1"="#4858A7", "4"="#788FC8", "5"="#D6DAE1", "3"="#F49B7C", "2"="#B51F29"),
fireworks = c("5"="white","2"="#2488F0","4"="#7F3F98","3"="#E22929","1"="#FCB31A"),
greyMagma = c("2"="grey", "4"="#FB8861FF", "5"="#B63679FF", "3"="#51127CFF", "1"="#000004FF"),
fireworks2 = c("5"="black", "2"="#2488F0","4"="#7F3F98","3"="#E22929","1"="#FCB31A"),
purpleOrange = c("5"="#581845", "2"="#900C3F", "4"="#C70039", "3"="#FF5744", "1"="#FFC30F")
)
#' Optimized discrete color palette generation
#'
#' This function assesses the number of inputs and returns a discrete color palette that is tailored to provide the most
#' possible color contrast from the designated color set.
#'
#' @param values A character vector containing the sample names that will be used. Each entry in this character vector will be
#' given a unique color from the designated palette set.
#' @param set The name of a color palette provided in the `bindSCPalettes` list object.
#' @param reverse A boolean variable that indicates whether to return the palette colors in reverse order.
#' @export
paletteDiscrete <- function(
values = NULL,
set = "stallion",
reverse = FALSE
){
values <- gtools::mixedsort(values)
n <- length(unique(values))
pal <- bindSCPalettes[[set]]
palOrdered <- pal[gtools::mixedsort(names(pal))] #mixed sort gets 1,2,3,4..10,11,12
if(n > length(palOrdered)){
message("Length of unique values greater than palette, interpolating..")
palOut <- colorRampPalette(pal)(n)
}else{
palOut <- palOrdered[seq_len(n)]
}
if(reverse){
palOut <- rev(palOut)
}
names(palOut) <- unique(values)
return(palOut)
}
#' Continuous Color Palette
#'
#' @param set The name of a color palette provided in the `bindSCPalettes` list object.
#' @param n The number of unique colors to generate as part of this continuous color palette.
#' @param reverse A boolean variable that indicates whether to return the palette colors in reverse order.
#' @export
paletteContinuous <- function(
set = "solarExtra",
n = 256,
reverse = FALSE
){
pal <- bindSCPalettes[[set]]
palOut <- colorRampPalette(pal)(n)
if(reverse){
palOut <- rev(palOut)
}
return(palOut)
}
plot_geneScoreChange <- function(X=NULL, Z0=NULL,Z_impu=NULL){
X<- (X-min(X))/(max(X)-min(X))
Z0<- (Z0-min(Z0))/(max(Z0)-min(Z0))
Z_impu<- (Z_impu-min(Z_impu))/(max(Z_impu)-min(Z_impu))
before_bindSC <- data.frame("True"=as.vector(X), "Est"=as.vector(Z0))
val <-cor(before_bindSC$True, before_bindSC$Est)
p21 <- ggplot(before_bindSC, aes(x=True, y=Est) ) + geom_bin2d() + theme_classic() +
xlab("True") + ylab("Initilized gene score matrix") +
stat_cor(label.y=1) +
scale_fill_gradient(low="lightblue1",high="darkblue",trans="log10")
after_bindSC <- data.frame("True"=as.vector(X), "Est"=as.vector(Z_impu))
val <-cor(after_bindSC$True, after_bindSC$Est)
p22 <- ggplot(after_bindSC, aes(x=True, y=Est) ) + geom_bin2d() + theme_classic() +
xlab("True") + ylab("Imputed gene score matrix") +
stat_cor(label.y=1) +
scale_fill_gradient(low="lightblue1",high="darkblue",trans="log10")
p4 <- ggarrange(p21, p22, ncol=2)
return(p4)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.