R/writeJAGSmodel.R

Defines functions writeJAGSmodel

Documented in writeJAGSmodel

#' @title Write JAGS model
#'
#' @description Writes a text file version of the model to be used by JAGS
#'
#' @author Kevin See
#'
#' @param file_name name (with file path) to save the model as
#' @param win_model what type of distribution should be used when modeling the window counts. \code{neg_bin} is a standard negative binomial distribution. \code{neg_bin2} is a more flexible version of a negative binomial, allowing the mean-variance relationship to take different forms. \code{pois} is a Poisson distribution. \code{quasi_pois} is the quasi-Poisson distribution. \code{log_space} assumes that the window counts have normal errors in log-space.
#' @param trap_est should an estimate of escapement based on the adult fish trap rate be used as a second observation of true total escapement, together with the window counts? Default is \code{TRUE}. If \code{FALSE}, \code{win_model} is automatically set to \code{pois}.
#'
#' @export
#' @return NULL
#' @examples writeJAGSmodel()
#'
writeJAGSmodel = function(file_name = NULL,
                          win_model = c('neg_bin', 'neg_bin2', 'pois', 'quasi_pois', 'log_space'),
                          trap_est = T) {

  if(is.null(file_name)) file_name = 'LGR_escapement_JAGS.txt'

  win_model = match.arg(win_model)

  if(!trap_est) {
    win_model = 'pois'
  }

  # standard JAGS model, using negative binomial
  model_code = '
  model {

    ####################################
    # Set up parameters and initial states...
    ####################################
    X.sigma ~ dunif(0, 20) # process error in log space
    X.tau <- pow(X.sigma, -2)
    X.log.all[1] ~ dunif(-10,10) # initial state in log space

    # for over-dispersed negative binomial
    r ~ dunif(0, 100)
    k <- 1/r

    # modeling proportion of fish available for window counts
    day.true.logit[1] ~ dnorm(0, 0.001)	# daytime ascension rate for week 1
    day.sigma ~ dunif(0, 10) # process error on daytime (window open) proportion
    day.tau <- pow(day.sigma, -2)

    # modeling proportion of fish re-ascending the dam
    reasc.true.logit[1] ~ dnorm(0, 0.001) # re-ascension rate for week 1
    reasc.sigma ~ dunif(0, 10) # process error on re-ascension proportion
    reasc.tau <- pow(reasc.sigma, -2)

    # modeling proportion of fish that are wild, hatchery no-clip and hatchery
    # set probability for any type of fish that was never caught to 0
    # prior on log odds ratio for initial week
    for(j in 1:2) {
      org.phi[1,j] ~ dnorm(0, 0.01)
      exp.org.phi[1,j] <- exp(org.phi[1,j]) * org.exist[j]
    }

    # set hatchery as baseline
    for(i in 1:TotLadderWeeks) {
      org.phi[i,3] <- 0
      exp.org.phi[i,3] <- exp(org.phi[i,3]) * org.exist[3]
      # get sum of all phis
      sum.exp.phi[i] <- sum(exp.org.phi[i,])
    }

    # extract initial movement probabilities for week 1
    for(j in 1:3) {
      org.prop[1,j] <- ifelse(org.exist[j] == 0, 0, exp.org.phi[1,j] / sum.exp.phi[1])
    }

    # variation in time-varying random walk movement probabilities
    org.sigma ~ dunif(0, 10)
    org.tau <- pow(org.sigma, -2)

    for(i in 2:TotLadderWeeks) {
      for(j in 1:2) {
        epsilon[i,j] ~ dnorm(0, org.tau)
        # set phi for any type of fish that was never caught to 0
        org.phi[i,j] <- ifelse(org.exist[j] == 0, 0, org.phi[i - 1, j] + epsilon[i,j])
        exp.org.phi[i,j] <- exp(org.phi[i,j]) * org.exist[j]
      }

      for (j in 1:3) {
        org.prop[i,j] <- exp.org.phi[i,j] / sum.exp.phi[i]
      }
    }

    # parameter clean-up
    for(i in 1 :TotLadderWeeks) {
      day.true[i] <- ilogit(day.true.logit[i]) * ladder[i]
      reasc.true[i] <- ilogit(reasc.true.logit[i]) * ladder[i]
    }

    ####################################
    ## True state of nature
    ####################################

    for(i in 2:TotLadderWeeks) {
      # random walks
      X.log.all[i] ~ dnorm(X.log.all[i-1], X.tau)
      day.true.logit[i] ~ dnorm(day.true.logit[i-1], day.tau)
      reasc.true.logit[i] ~ dnorm(reasc.true.logit[i-1], reasc.tau)
    }

    # derived parameters
    for(i in 1:TotLadderWeeks) {

      X.all[i] <- round(exp(X.log.all[i]) * ladder[i])
      X.day[i] <- round(X.all[i] * day.true[i])
      X.night[i] <- X.all[i] - X.day[i]
      X.reasc[i] <- round(X.all[i] * reasc.true[i])

      X.all.wild[i] <- round(X.all[i] * org.prop[i,1])
      X.all.hnc[i] <- round(X.all[i] * org.prop[i,2])
      X.all.hatch[i] <- round(X.all[i] * org.prop[i,3])

      X.new.tot[i] <- round(X.all[i] * (1 - reasc.true[i]))
      X.new.wild[i] <- round(X.new.tot[i] * org.prop[i,1])
      X.new.hnc[i] <- round(X.new.tot[i] * org.prop[i,2])
      X.new.hatch[i] <- round(X.new.tot[i] * org.prop[i,3])

      X.reasc.wild[i] <- X.all.wild[i] - X.new.wild[i]
      X.night.wild[i] <- X.new.wild[i] * (1 - day.true[i])

    }

    ####################################
    ## What we observe
    ####################################

    for(i in 1:TotLadderWeeks) {
      # at window: over-dispersed negative binomial
      # overdispersed if r is small, approximately Poisson if r is very large
      p[i] <- r / (r + X.day[i])
      Y.window[i] ~ dnegbin(p[i], r)

      # in trap
      # uncertainty in trap rate
      trap.rate.true[i] ~ dbeta(trap.alpha[i], trap.beta[i])
      Y.trap[i] ~ dbin(trap.rate.true[i], X.all[i])

      # fish in trap by origin
      trap.fish.matrix[i,1:3] ~ dmulti(org.prop[i,], trap.fish[i])

      # day-time tags
      DC.tags[i] ~ dbin(day.true[i], Tot.tags[i])

      # re-ascension tags
      ReAsc.tags[i] ~ dbin(reasc.true[i], Tot.tags[i])
    }

    ####################################
    ## Summary statistics
    ####################################

    X.tot.all <- sum(X.all)
    X.tot.day <- sum(X.day)
    X.tot.night <- sum(X.night)
    X.tot.reasc <- sum(X.reasc)

    X.tot.all.wild <- sum(X.all.wild)
    X.tot.all.hatch <- sum(X.all.hatch)
    X.tot.all.hnc <- sum(X.all.hnc)

    X.tot.new.all <- sum(X.new.tot)
    X.tot.new.wild <- sum(X.new.wild)
    X.tot.new.hatch <- sum(X.new.hatch)
    X.tot.new.hnc <- sum(X.new.hnc)

    X.tot.night.wild <- sum(X.night.wild)
    X.tot.reasc.wild <- sum(X.reasc.wild)

    prop.tagged <- sum(trap.fish.matrix[,1]) / X.tot.new.wild

  }

  '

  # write model as text file
  writeLines(model_code, file_name)

  # read back in to make any necessary modifications
  model_file = readLines(file_name)

  # comment out lines related to the trap estimate
  if(!trap_est) {
    model_file[seq(grep('# in trap', model_file), length.out = 4)] = paste('#', model_file[seq(grep('# in trap', model_file), length.out = 4)])
  }

  # modifications of model for different ways to model the window counts

  # another version of the negative binomial
  if(win_model == 'neg_bin2') {
    model_file[seq(grep('r ~', model_file), length.out = 2)] = c('    omega ~ dgamma(0.01, 0.01)',
                                                                 '    theta ~ dgamma(0.01, 0.01)')

    model_file[seq(grep('# at window: over-dispersed negative binomial', model_file),
                   length.out = 5)] = c('        # at window: over-dispersed negative binomial',
                                        '        # like quasi-Poisson if theta = 0, like neg. binomial if omega = 1, like Poisson if theta = 0 & omega = 1',
                                        '        r[i] <- X.all[i] / (omega - 1 + (theta * X.all[i]))',
                                        '        p[i] <- 1 / (omega + theta * X.all[i])',
                                        '        Y.window[i] ~ dnegbin(p[i], r[i])')
  }

  # Poisson
  if(win_model == 'pois') {
    model_file = model_file[-seq(grep('r ~', model_file) - 1, length.out = 3)]

    model_file[seq(grep('at window', model_file), length.out = 4)] =
      c('        # at window: Poisson',
        '        Y.window[i] ~ dpois(X.day[i])',
        '', '')
  }

  # Quasi-poisson
  if(win_model == 'quasi_pois') {
    model_file[seq(grep('r ~', model_file) - 1, length.out = 3)] =
      c('    # for quasi-Poisson',
        '    qp.tau ~ dgamma(0.001, 0.001)',
        '    qp.sigma <- pow(qp.tau, -2)')

    model_file[seq(grep('at window', model_file), length.out = 4)] =
      c('        # at window: quasi-Poisson (modeled with random effects for each week)',
        '        wkRE[i] ~ dnorm(0, qp.tau)',
        '        Y.window[i] ~ dpois(X.day[i] * exp(wkRE[i]) )',
        '')

  }

  # normal errors in log space
  if(win_model == 'log_space') {
    model_file[seq(grep('r ~', model_file) - 1, length.out = 3)] =
      c('    # variance of window counts (log space)',
        '    win.sigma ~ dunif(0, 5)',
        '    win.tau = pow(win.sigma, -2)')

    model_file[seq(grep('at window', model_file), length.out = 4)] =
      c('        # at window: normal errors in log space',
        '        Y.window.log[i] ~ dnorm(log(X.day[i]), win.tau)',
        '', '')
  }

  writeLines(model_file, file_name)

}
KevinSee/STADEM documentation built on Sept. 8, 2019, 10:27 a.m.