revdep/library/optedr/old/bslib/themer-demo/global.R

library(ggplot2)
library(lattice)

ids <- factor(c("1.1", "2.1", "1.2", "2.2", "1.3", "2.3"))
values <- data.frame(
  id = ids,
  value = c(3, 3.1, 3.1, 3.2, 3.15, 3.5)
)
positions <- data.frame(
  id = rep(ids, each = 4),
  x = c(
    2,
    1,
    1.1,
    2.2,
    1,
    0,
    0.3,
    1.1,
    2.2,
    1.1,
    1.2,
    2.5,
    1.1,
    0.3,
    0.5,
    1.2,
    2.5,
    1.2,
    1.3,
    2.7,
    1.2,
    0.5,
    0.6,
    1.3
  ),
  y = c(
    -0.5,
    0,
    1,
    0.5,
    0,
    0.5,
    1.5,
    1,
    0.5,
    1,
    2.1,
    1.7,
    1,
    1.5,
    2.2,
    2.1,
    1.7,
    2.1,
    3.2,
    2.8,
    2.1,
    2.2,
    3.3,
    3.2
  )
)
huron <- data.frame(year = 1875:1972, level = as.vector(LakeHuron))

ggplot2_examples <- list(
  GeomPointColor = {
    ggplot(mtcars, aes(wt, mpg, color = cyl)) + geom_point()
  },
  GeomAbline = {
    ggplot(mtcars, aes(mpg, wt)) +
      geom_point() +
      geom_hline(
        aes(yintercept = wt),
        data.frame(cyl = c(4, 6, 8), wt = c(2.28, 3.11, 4.00))
      ) +
      facet_wrap(~cyl)
  },
  GeomBar = ggplot(mpg, aes(class)) + geom_bar(aes(weight = displ)),
  GeomBin2d = ggplot(diamonds, aes(x, y)) +
    xlim(4, 10) +
    ylim(4, 10) +
    geom_bin2d(),
  GeomBox = ggplot(mpg, aes(class, hwy)) + geom_boxplot(),
  GeomContour = ggplot(faithfuld, aes(waiting, eruptions, z = density)) +
    geom_contour(),
  GeomContourRaster = ggplot(faithfuld, aes(waiting, eruptions, z = density)) +
    geom_raster(aes(fill = density)) +
    geom_contour(),
  GeomCount = ggplot(mpg, aes(cty, hwy)) + geom_count(),
  GeomDensity = ggplot(diamonds, aes(carat)) + geom_density(),
  GeomDensityColor = ggplot(diamonds, aes(depth, fill = cut, colour = cut)) +
    geom_density(alpha = 0.1),
  GeomDotPlot = ggplot(mtcars, aes(x = mpg)) + geom_dotplot(),
  GeomError = {
    ggplot(
      data.frame(
        trt = factor(c(1, 1, 2, 2)),
        resp = c(1, 5, 3, 4),
        group = factor(c(1, 2, 1, 2)),
        se = c(0.1, 0.3, 0.3, 0.2)
      ),
      aes(resp, trt, colour = group)
    ) +
      geom_point() +
      geom_errorbarh(aes(xmax = resp + se, xmin = resp - se))
  },
  GeomHex = ggplot(diamonds, aes(carat, price)) +
    geom_hex(binwidth = c(.1, 500)),
  GeomHistogram = ggplot(diamonds, aes(price, fill = cut)) +
    geom_histogram(binwidth = 500),
  GeomJitter = ggplot(mpg, aes(cyl, hwy)) + geom_jitter(width = 0.25),
  GeomErrorbar = ggplot(
    data.frame(
      trt = factor(c(1, 1, 2, 2)),
      resp = c(1, 5, 3, 4),
      group = factor(c(1, 2, 1, 2)),
      upper = c(1.1, 5.3, 3.3, 4.2),
      lower = c(0.8, 4.6, 2.4, 3.6)
    ),
    aes(trt, resp, fill = group)
  ) +
    geom_col(position = position_dodge(width = 0.9)) +
    geom_errorbar(
      aes(ymin = lower, ymax = upper),
      position = position_dodge(width = 0.9),
      width = 0.25
    ),
  GeomPolygon = ggplot(values) +
    geom_map(aes(map_id = id), map = positions) +
    expand_limits(positions),
  GeomPolygon2 = ggplot(values, aes(fill = value)) +
    geom_map(aes(map_id = id), map = positions) +
    expand_limits(positions),
  GeomLine = ggplot(economics_long, aes(date, value01, group = variable)) +
    geom_line(),
  GeomLine2 = ggplot(economics_long, aes(date, value01, colour = variable)) +
    geom_line(),
  GeomPoint = ggplot(diamonds, aes(carat, price)) + geom_point(alpha = 1 / 50),
  GeomPoint2 = ggplot(
    mtcars,
    aes(wt, mpg, color = factor(cyl), shape = factor(cyl))
  ) +
    geom_point(),
  GeomQuantile = ggplot(mpg, aes(displ, 1 / hwy)) +
    geom_point() +
    geom_quantile(),
  GeomRibbon = ggplot(huron, aes(year)) +
    geom_ribbon(aes(ymin = level - 1, ymax = level + 1), fill = "grey70") +
    geom_line(aes(y = level)),
  GeomRug = ggplot(mtcars, aes(wt, mpg)) + geom_point() + geom_rug(),
  GeomRug2 = ggplot(mtcars, aes(wt, mpg)) +
    geom_point() +
    geom_rug(outside = TRUE) +
    coord_cartesian(clip = "off"),
  GeomCurve = {
    df <- data.frame(x1 = 2.62, x2 = 3.57, y1 = 21.0, y2 = 15.0)
    ggplot(mtcars, aes(wt, mpg)) +
      geom_point() +
      geom_curve(
        aes(x = x1, y = y1, xend = x2, yend = y2, colour = "curve"),
        data = df
      ) +
      geom_segment(
        aes(x = x1, y = y1, xend = x2, yend = y2, colour = "segment"),
        data = df
      ) +
      geom_curve(
        aes(x = x1, y = y1, xend = x2, yend = y2),
        data = df,
        curvature = -0.2
      )
  },
  GeomSmooth = ggplot(
    diamonds[sample(nrow(diamonds), 1000), ],
    aes(carat, price)
  ) +
    geom_point(alpha = 0.2) +
    geom_smooth() +
    facet_wrap(~cut) +
    ggtitle("Diamond price by carat and cut"),
  GeomSmooth2 = ggplot(mpg, aes(displ, hwy, colour = class)) +
    geom_point() +
    geom_smooth(se = FALSE, method = lm),
  GeomSpoke = {
    df <- expand.grid(x = 1:10, y = 1:10)
    df$angle <- runif(100, 0, 2 * pi)
    df$speed <- runif(100, 0, sqrt(0.1 * df$x))

    ggplot(df, aes(x, y)) +
      geom_point() +
      geom_spoke(aes(angle = angle), radius = 0.5)
  },
  GeomText = ggplot(mtcars, aes(wt, mpg, label = rownames(mtcars))) +
    geom_text(),
  GeomLabel = ggplot(mtcars, aes(wt, mpg, label = rownames(mtcars))) +
    geom_label(),
  GeomTile = ggplot(
    data.frame(
      x = rep(c(2, 5, 7, 9, 12), 2),
      y = rep(c(1, 2), each = 5),
      z = factor(rep(1:5, each = 2)),
      w = rep(diff(c(0, 4, 6, 8, 10, 14)), 2)
    ),
    aes(x, y, width = w)
  ) +
    geom_tile(aes(fill = z)),
  GeomViolin = ggplot(mtcars, aes(factor(cyl), mpg)) + geom_violin()
)

lattice_examples <- list(
  settings = quote(show.settings()),
  densityplot = quote(
    densityplot(
      ~mpg,
      data = mtcars,
      group = factor(
        mtcars$am,
        levels = c(0, 1),
        labels = c("Automatic", "Manual")
      ),
      main = "MPG Distribution by Transmission Type",
      xlab = "Miles per Gallon",
      auto.key = TRUE
    )
  )
)

base_examples <- list(
  scatterplot = quote(
    plot(
      iris$Sepal.Length,
      iris$Sepal.Width,
      col = iris$Species,
      main = "Sepal Length vs Width in Iris"
    )
  ),
  hist = quote(hist(iris$Sepal.Length))
)
Kezrael/optedr documentation built on Feb. 17, 2025, 1:37 a.m.