post.check <- function(x, main = "Histogram and Density Estimate of Residuals",
main2 = "Histogram and Density Estimate of Residuals",
xlab = "Quantile Residuals", xlab2 = "Quantile Residuals",
intervals = FALSE, n.sim = 100, prob.lev = 0.05, ...){
if(x$triv == TRUE ) stop("This function is not suitable for trivariate probit models.")
y1m <- y2m <- NA
qr <- qr1 <- qr2 <- NULL
if(x$univar.gamlss == FALSE){###
if(x$surv.flex == TRUE && x$margins[1] %in% x$bl && x$margins[2] %in% x$bl){ ###
par(mfrow = c(2, 2))
qr1 <- -log(x$fit$p1)
H1 <- -log(survfit(Surv(qr1, x$cens1) ~ 1, type = "kaplan-meier", conf.type = "none")$surv)
hist(qr1, freq = FALSE, main = main, xlab = "Cox-Snell residuals", ylab = "Density", ...)
lines(density(qr1, adjust = 2), lwd = 2)
qqplot(qr1, H1, xlab = "Cox-Snell residuals", ylab = "Cumulative Hazards of residuals")
abline(0, 1, col = "red")
qr2 <- -log(x$fit$p2)
H2 <- -log(survfit(Surv(qr2, x$cens2) ~ 1, type = "kaplan-meier", conf.type = "none")$surv)
hist(qr2, freq = FALSE, main = main, xlab = "Cox-Snell residuals", ylab = "Density", ...)
lines(density(qr2, adjust = 2), lwd = 2)
qqplot(qr2, H2, xlab = "Cox-Snell residuals", ylab = "Cumulative Hazards of residuals")
abline(0, 1, col = "red")
# we could build intervals here as well
}###
if(x$surv.flex == TRUE && x$margins[1] %in% c(x$VC$m2,x$VC$m3) && x$margins[2] %in% x$bl){ ###
par(mfrow = c(2, 2))
p1 <- distrHsAT(x$y1, x$eta1, x$sigma21, x$nu1, x$margins[1], min.dn = x$VC$min.dn, min.pr = x$VC$min.pr, max.pr = x$VC$max.pr)$p2
qr1 <- qnorm(p1)
hist(qr1, freq = FALSE, main = main, xlab = xlab, ylab = "Density", ...)
lines(density(qr1, adjust = 2),lwd=2)
if(intervals == FALSE){qqnorm(qr1); abline(0, 1, col = "red")}
if(intervals == TRUE) int.postcheck(x, x$VC$margins[1], n.rep = n.sim, prob.lev = prob.lev, y2m = NULL, eq = 1)
qr2 <- -log(x$fit$p2)
H2 <- -log(survfit(Surv(qr2, x$cens2) ~ 1, type = "kaplan-meier", conf.type = "none")$surv)
hist(qr2, freq = FALSE, main = main, xlab = "Cox-Snell residuals", ylab = "Density", ...)
lines(density(qr2, adjust = 2), lwd = 2)
qqplot(qr2, H2, xlab = "Cox-Snell residuals", ylab = "Cumulative Hazards of residuals")
abline(0, 1, col = "red")
}###
if(x$surv.flex == FALSE){##
mbin <- c("probit", "logit", "cloglog")
if(x$VC$margins[1] %in% mbin && x$VC$margins[2] %in% mbin ) stop("It does not make much sense to check the residuals for a binary response model.")
if(x$Cont == "NO"){
y2 <- x$y2
eta2 <- x$eta2
sigma2 <- x$sigma2
nu <- x$nu
if(x$VC$margins[2] %in% c("ZTP")){
ly2 <- length(y2)
y2m <- list()
my2 <- max(y2)
for(i in 1:ly2){ y2m[[i]] <- seq(1, y2[i]); length(y2m[[i]]) <- my2}
y2m <- do.call(rbind, y2m)
}
if(x$VC$margins[2] %in% c("DGP","DGPII")){
ly2 <- length(y2)
y2m <- list()
my2 <- max(y2)
for(i in 1:ly2){ y2m[[i]] <- seq(0, y2[i]); length(y2m[[i]]) <- my2+1}
y2m <- do.call(rbind, y2m)
}
if(x$VC$ccss == "yes"){
eta2 <- eta2[x$inde]
if(!is.null(x$X3) && !(x$VC$margins[2] %in% x$VC$m1d) ){
sigma2 <- sigma2[x$inde]
nu <- nu[x$inde]
}
}
if(x$VC$margins[2] %in% c(x$VC$m2,x$VC$m3)){p <- distrHsAT(y2, eta2, sigma2, nu, x$margins[2], min.dn = x$VC$min.dn, min.pr = x$VC$min.pr, max.pr = x$VC$max.pr)$p2
if(x$VC$margins[2] %in% c("TW")) p[y2 == 0] <- runif(sum(y2 == 0), min = 0, max = p[y2 == 0])
qr <- qnorm(p)
}
if(x$VC$margins[2] %in% c(x$VC$m1d,x$VC$m2d,x$VC$m3d)){
pd <- distrHsATDiscr(y2, eta2, sigma2, nu, x$margins[2], y2m = y2m, min.dn = x$VC$min.dn, min.pr = x$VC$min.pr, max.pr = x$VC$max.pr)
p <- pd$p2
d <- pd$pdf2
if(intervals == TRUE) set.seed(100)
qr <- qnorm( runif(y2, p - d, p) )
}
if(x$VC$ccss == "yes") qr <- qr - mean(qr)
par(mfrow = c(1, 2))
hist(qr, freq = FALSE, main = main, xlab = xlab, ylab = "Density", ...)
lines(density(qr, adjust = 2), lwd = 2)
if(intervals == FALSE){qqnorm(qr); abline(0, 1, col = "red")}
if(intervals == TRUE) int.postcheck(x, x$VC$margins[2], n.rep = n.sim, prob.lev = prob.lev, y2m = y2m)
}
if(x$Cont == "YES"){
y1 <- x$y1
y2 <- x$y2
if(x$VC$margins[1] %in% c("ZTP")){
ly1 <- length(y1)
y1m <- list()
my1 <- max(y1)
for(i in 1:ly1){ y1m[[i]] <- seq(1, y1[i]); length(y1m[[i]]) <- my1}
y1m <- do.call(rbind, y1m)
}
if(x$VC$margins[2] %in% c("ZTP")){
ly2 <- length(y2)
y2m <- list()
my2 <- max(y2)
for(i in 1:ly2){ y2m[[i]] <- seq(1, y2[i]); length(y2m[[i]]) <- my2}
y2m <- do.call(rbind, y2m)
}
if(x$VC$margins[1] %in% c("DGP","DGPII")){
ly1 <- length(y1)
y1m <- list()
my1 <- max(y1)
for(i in 1:ly1){ y1m[[i]] <- seq(0, y1[i]); length(y1m[[i]]) <- my1+1}
y1m <- do.call(rbind, y1m)
}
if(x$VC$margins[2] %in% c("DGP","DGPII")){
ly2 <- length(y2)
y2m <- list()
my2 <- max(y2)
for(i in 1:ly2){ y2m[[i]] <- seq(0, y2[i]); length(y2m[[i]]) <- my2+1}
y2m <- do.call(rbind, y2m)
}
if(x$VC$margins[1] %in% c(x$VC$m2,x$VC$m3)) {p1 <- distrHsAT(x$y1, x$eta1, x$sigma21, x$nu1, x$margins[1], min.dn = x$VC$min.dn, min.pr = x$VC$min.pr, max.pr = x$VC$max.pr)$p2
if(x$VC$margins[1] %in% c("TW")) p1[x$y1 == 0] <- runif(sum(x$y1 == 0), min = 0, max = p1[x$y1 == 0])
}
if(x$VC$margins[1] %in% c(x$VC$m1d,x$VC$m2d,x$VC$m3d)){
pd <- distrHsATDiscr(x$y1, x$eta1, x$sigma21, x$nu1, x$margins[1], y2m = y1m, min.dn = x$VC$min.dn, min.pr = x$VC$min.pr, max.pr = x$VC$max.pr)
p <- pd$p2
d <- pd$pdf2
set.seed(100)
p1 <- runif(y1, p - d, p)
}
if(x$VC$margins[2] %in% c(x$VC$m2,x$VC$m3)){ p2 <- distrHsAT(x$y2, x$eta2, x$sigma22, x$nu2, x$margins[2], min.dn = x$VC$min.dn, min.pr = x$VC$min.pr, max.pr = x$VC$max.pr)$p2
if(x$VC$margins[2] %in% c("TW")) p2[x$y2 == 0] <- runif(sum(x$y2 == 0), min = 0, max = p2[x$y2 == 0])
}
if(x$VC$margins[2] %in% c(x$VC$m1d,x$VC$m2d,x$VC$m3d)){
pd <- distrHsATDiscr(x$y2, x$eta2, x$sigma22, x$nu2, x$margins[2], y2m = y2m, min.dn = x$VC$min.dn, min.pr = x$VC$min.pr, max.pr = x$VC$max.pr)
p <- pd$p2
d <- pd$pdf2
set.seed(100)
p2 <- runif(y2, p - d, p)
}
par(mfrow = c(2, 2))
qr1 <- qnorm(p1)
hist(qr1, freq = FALSE, main = main, xlab = xlab, ylab = "Density", ...)
lines(density(qr1, adjust = 2),lwd=2)
if(intervals == FALSE){qqnorm(qr1); abline(0, 1, col = "red")}
if(intervals == TRUE) int.postcheck(x, x$VC$margins[1], n.rep = n.sim, prob.lev = prob.lev, y2m = y1m, eq = 1)
qr2 <- qnorm(p2)
hist(qr2, freq = FALSE, main = main2, xlab = xlab2, ylab = "Density", ...)
lines(density(qr2, adjust = 2),lwd=2)
if(intervals == FALSE){qqnorm(qr2); abline(0, 1, col = "red")}
if(intervals == TRUE) int.postcheck(x, x$VC$margins[2], n.rep = n.sim, prob.lev = prob.lev, y2m = y2m, eq = 2)
}
}##
}###
if(x$univar.gamlss == TRUE){
if(x$surv.flex == FALSE){ ###
if(x$VC$margins[1] %in% c("GEVlink") ) stop("It does not make much sense to check the residuals for a binary response model.")
y1 <- x$y1
if(x$VC$margins[1] %in% c("DGP","DGPII")){
ly1 <- length(y1)
y1m <- list()
my1 <- max(y1)
for(i in 1:ly1){ y1m[[i]] <- seq(0, y1[i]); length(y1m[[i]]) <- my1+1}
y1m <- do.call(rbind, y1m)
}
if(x$VC$margins[1] %in% c("ZTP")){
ly1 <- length(y1)
y1m <- list()
my1 <- max(y1)
for(i in 1:ly1){ y1m[[i]] <- seq(1, y1[i]); length(y1m[[i]]) <- my1}
y1m <- do.call(rbind, y1m)
}
if(x$VC$margins[1] %in% c(x$VC$m2,x$VC$m3)) p1 <- distrHsAT(x$y1, x$eta1, x$sigma2, x$nu, x$margins[1], min.dn = x$VC$min.dn, min.pr = x$VC$min.pr, max.pr = x$VC$max.pr)$p2
if(x$VC$margins[1] %in% c("TW")) p1[x$y1 == 0] <- runif(sum(x$y1 == 0), min = 0, max = p1[x$y1 == 0])
if(x$VC$margins[1] %in% c(x$VC$m1d,x$VC$m2d,x$VC$m3d)){
pd <- distrHsATDiscr(x$y1, x$eta1, x$sigma2, x$nu, x$margins[1], y2m = y1m, min.dn = x$VC$min.dn, min.pr = x$VC$min.pr, max.pr = x$VC$max.pr)
p <- pd$p2
d <- pd$pdf2
p1 <- runif(y1, p - d, p)
}
par(mfrow = c(1, 2))
qr <- qnorm(p1)
hist(qr, freq = FALSE, main = main, xlab = xlab, ylab = "Density", ...)
lines(density(qr, adjust = 2), lwd = 2)
if(intervals == FALSE){qqnorm(qr); abline(0, 1, col = "red")}
if(intervals == TRUE) int.postcheck(x, x$VC$margins[1], n.rep = n.sim, prob.lev = prob.lev, y2m = y1m)
}###
if(x$surv.flex == TRUE){ ###
if(x$type.cens != "R") stop("This function currently supports only the case of right censoring.\n Get in touch to check progress. ")
par(mfrow = c(1, 2))
qr <- -log(x$fit$p1)
H <- -log(survfit(Surv(qr, x$cens) ~ 1, type = "kaplan-meier", conf.type = "none")$surv)
hist(qr, freq = FALSE, main = main, xlab = "Cox-Snell residuals", ylab = "Density", ...)
lines(density(qr, adjust = 2), lwd = 2)
qqplot(qr, H, xlab = "Cox-Snell residuals", ylab = "Cumulative Hazards of residuals")
abline(0, 1, col = "red")
}###
}
L <- list(qr = qr, qr1 = qr1, qr2 = as.numeric(qr2))
invisible(L)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.