#' Perform normal GWAS including interaction (test each single SNP)
#'
#' @description This function performs single-SNP GWAS (genome-wide association studies), including the interaction between SNP and genetic background (or other environmental factors).
#' The model of GWAS is quite similar to the one in the `RGWAS.normal` function:
#'
#' \deqn{y = X \beta + S _ {i} \alpha _ {i} + Q v + Z u + \epsilon,}
#'
#' where \eqn{y} is the vector of phenotypic values,
#' \eqn{X \beta}, \eqn{S _ {i} \alpha _ {i}}, \eqn{Q v} are the terms of fixed effects,
#' \eqn{Z u} is the term of random effects and \eqn{e} is the vector of residuals.
#' \eqn{X \beta} indicates all of the fixed effects other than the effect of SNPs
#' to be tested and of population structure, and often this term also plays
#' a role as an intercept. For \eqn{S _ {i} \alpha _ {i}}, this term is only the difference
#' compared to the model for normal single-SNP GWAS. Here, \eqn{S _ {i}}
#' includes the ith marker of genotype data and the interaction variables between
#' the ith marker of genotype data and the matrix representing the genetic back ground
#' (or some environmental factors). \eqn{\alpha _ {i}} is the cooresponding effects
#' of that marker and the interaction term.
#' \eqn{Q v} is the term to correct the effect of population structure.
#' \eqn{Z u} is the term of polygenetic effects, and suppose that \eqn{u}
#' follows the multivariate normal distribution whose variance-covariance
#' matrix is the genetic covariance matrix. \eqn{u \sim MVN (0, K \sigma_{u}^{2})}.
#' Finally, the residual term is assumed to identically and independently follow
#' a normal distribution as shown in the following equation.
#' \eqn{e \sim MVN (0, I \sigma_{e}^{2})}.
#'
#'
#'
#' @param pheno Data frame where the first column is the line name (gid). The remaining columns should be a phenotype to test.
#' @param geno Data frame with the marker names in the first column. The second and third columns contain the chromosome and map position.
#' Columns 4 and higher contain the marker scores for each line, coded as [-1, 0, 1] = [aa, Aa, AA].
#' @param ZETA A list of covariance (relationship) matrix (K: \eqn{m \times m}) and its design matrix (Z: \eqn{n \times m}) of random effects.
#' Please set names of list "Z" and "K"! You can use more than one kernel matrix.
#' For example,
#'
#' ZETA = list(A = list(Z = Z.A, K = K.A), D = list(Z = Z.D, K = K.D))
#' \describe{
#' \item{Z.A, Z.D}{Design matrix (\eqn{n \times m}) for the random effects. So, in many cases, you can use the identity matrix.}
#' \item{K.A, K.D}{Different kernels which express some relationships between lines.}
#' }
#' For example, K.A is additive relationship matrix for the covariance between lines, and K.D is dominance relationship matrix.
#' @param package.MM The package name to be used when solving mixed-effects model. We only offer the following three packages:
#' "RAINBOWR", "MM4LMM" and "gaston". Default package is `gaston`.
#' See more details at \code{\link{EM3.general}}.
#' @param covariate A \eqn{n \times 1} vector or a \eqn{n \times p _ 1} matrix. You can insert continuous values, such as other traits or genotype score for special markers.
#' This argument is regarded as one of the fixed effects.
#' @param covariate.factor A \eqn{n \times p _ 2} dataframe. You should assign a factor vector for each column.
#' Then RGWAS changes this argument into model matrix, and this model matrix will be included in the model as fixed effects.
#' @param structure.matrix You can use structure matrix calculated by structure analysis when there are population structure.
#' You should not use this argument with n.PC > 0.
#' @param interaction.with.SNPs A \eqn{m \times q} matrix. Interaction between each SNP and this matrix will also be tested.
#' For example, principal components of genomic relationship matrix can be used as this matrix to test the interaction between SNPs and the genetic background.
#' Or you can test the interaction with some environmental factors by inputting some omics data that represent the environment. (Test inluding GxE effects.)
#' @param interaction.mat.method Method to compute `interaction.with.SNPs` when `interaction.with.SNPs` is NULL.
#' We offer the following four different methods:
#'
#' "PCA": Principal component analysis for genomic relationship matrix (`K` in `ZETA`) using `prcomp` function
#'
#' "LDA": Linear discriminant analysis with independent variables as genomic relationship matrix (`K` in `ZETA`)
#' and dependent variables as some group information (`interaction.group`) using `lda` function
#'
#' "GROUP": Dummy variables for some group information (`interaction.group`)
#'
#' "DAPC": Perform LDA to the principal components of PCAfor genomic relationship matrix (`K` in `ZETA`)
#' using `dapc` function in `adgenet` package. See Jombart et al., 2010 and \code{\link[adegenet]{dapc}} for more details.
#' @param n.interaction.element Number of elements (variables) that are included in the model as interaction term for `interaction.with.SNPs`.
#' If `interaction.with.SNPs = NULL` and `n.interaction.element = 0`, then the standard SNP-based GWAS will be performed by `RGWAS.normal` function.
#' @param interaction.group When you use "LDA", "GROUP", or "DAPC", the information on groups (e.g., subgroups for the population) will be required.
#' You can set a vector of group names (or clustering ids) for each genotype as this argument. This vector should be factor.
#' @param n.interaction.group When `interaction.group = NULL`, `interaction.group` will be automatically determined by using k-medoids method (`pam` function in `cluster` package).
#' You should specify the number of groups by this argument to decide `interaction.group`.
#' @param interaction.group.method The method to perform clustering when `interaction.group = NULL`.
#' We offer the following two methods "find.clusters" and "pam".
#' "find.clusters" performs `adegenet::find.clusters` functions to conduct successive K-means clustering,
#' "pam" performs `cluster::pam` functions to conduct k-medoids clustering.
#' See \code{\link[adegenet]{find.clusters}} and \code{\link[cluster]{pam}} for more details.
#' @param n.PC.dapc Number of principal components to be used for `adegenet::find.clusters` or `adegenet::dapc` functions.
#' @param test.method.interaction Method for how to test SNPs and the interactions between SNPs and the genetic background.
#' We offer three methods as follows:
#'
#' "simultaneous": All effects (including SNP efects) are tested simultanously.
#'
#' "snpSeparate": SNP effects are tested as one effect, and the other interaction effects are simulateneously.
#'
#' "oneByOne": All efects are tested separately, one by one.
#'
#' @param n.PC Number of principal components to include as fixed effects. Default is 0 (equals K model).
#' @param min.MAF Specifies the minimum minor allele frequency (MAF).
#' If a marker has a MAF less than min.MAF, it is assigned a zero score.
#' @param P3D When P3D = TRUE, variance components are estimated by REML only once, without any markers in the model.
#' When P3D = FALSE, variance components are estimated by REML for each marker separately.
#' @param n.core Setting n.core > 1 will enable parallel execution on a machine with multiple cores.
#' This argument is not valid when `parallel.method = "furrr"`.
#' @param parallel.method Method for parallel computation. We offer three methods, "mclapply", "furrr", and "foreach".
#'
#' When `parallel.method = "mclapply"`, we utilize \code{\link[pbmcapply]{pbmclapply}} function in the `pbmcapply` package
#' with `count = TRUE` and \code{\link[parallel]{mclapply}} function in the `parallel` package with `count = FALSE`.
#'
#' When `parallel.method = "furrr"`, we utilize \code{\link[furrr]{future_map}} function in the `furrr` package.
#' With `count = TRUE`, we also utilize \code{\link[progressr]{progressor}} function in the `progressr` package to show the progress bar,
#' so please install the `progressr` package from github (\url{https://github.com/HenrikBengtsson/progressr}).
#' For `parallel.method = "furrr"`, you can perform multi-thread parallelization by
#' sharing memories, which results in saving your memory, but quite slower compared to `parallel.method = "mclapply"`.
#'
#' When `parallel.method = "foreach"`, we utilize \code{\link[foreach]{foreach}} function in the `foreach` package
#' with the utilization of \code{\link[parallel]{makeCluster}} function in `parallel` package,
#' and \code{\link[doParallel]{registerDoParallel}} function in `doParallel` package.
#' With `count = TRUE`, we also utilize \code{\link[utils]{setTxtProgressBar}} and
#' \code{\link[utils]{txtProgressBar}} functions in the `utils` package to show the progress bar.
#'
#' We recommend that you use the option `parallel.method = "mclapply"`, but for Windows users,
#' this parallelization method is not supported. So, if you are Windows user,
#' we recommend that you use the option `parallel.method = "foreach"`.
#' @param sig.level Significance level for the threshold. The default is 0.05.
#' @param method.thres Method for detemining threshold of significance. "BH" and "Bonferroni are offered.
#' @param plot.qq If TRUE, draw qq plot.
#' @param plot.Manhattan If TRUE, draw manhattan plot.
#' @param plot.method If this argument = 1, the default manhattan plot will be drawn.
#' If this argument = 2, the manhattan plot with axis based on Position (bp) will be drawn.
#' Also, this plot's color is changed by all chromosomes.
#' @param plot.col1 This argument determines the color of the manhattan plot.
#' You should substitute this argument as color vector whose length is 2.
#' plot.col1[1] for odd chromosomes and plot.col1[2] for even chromosomes
#' @param plot.col2 Color of the manhattan plot. color changes with chromosome and it starts from plot.col2 + 1
#' (so plot.col2 = 1 means color starts from red.)
#' @param plot.type This argument determines the type of the manhattan plot. See the help page of "plot".
#' @param plot.pch This argument determines the shape of the dot of the manhattan plot. See the help page of "plot".
#' @param saveName When drawing any plot, you can save plots in png format. In saveName, you should substitute the name you want to save.
#' When saveName = NULL, the plot is not saved.
#' @param main.qq The title of qq plot. If this argument is NULL, trait name is set as the title.
#' @param main.man The title of manhattan plot. If this argument is NULL, trait name is set as the title.
#' @param plot.add.last If saveName is not NULL and this argument is TRUE, then you can add lines or dots to manhattan plots.
#' However, you should also write "dev.off()" after adding something.
#' @param optimizer The function used in the optimization process.
#' We offer "optim", "optimx", and "nlminb" functions.
#' This argument is only valid when `package.MM = 'RAINBOWR'`.
#' @param return.EMM.res When return.EMM.res = TRUE, the results of equation of mixed models are included in the result of RGWAS.
#' @param thres If thres = TRUE, the threshold of the manhattan plot is included in the result of RGWAS.
#' When return.EMM.res or thres is TRUE, the results will be "list" class.
#' @param skip.check As default, RAINBOWR checks the type of input data and modifies it into the correct format.
#' However, it will take some time, so if you prepare the correct format of input data, you can skip this procedure
#' by setting `skip.check = TRUE`.
#' @param verbose If this argument is TRUE, messages for the current steps will be shown.
#' @param verbose2 If this argument is TRUE, welcome message will be shown.
#' @param count When count is TRUE, you can know how far RGWAS has ended with percent display.
#' @param time When time is TRUE, you can know how much time it took to perform RGWAS.
#'
#'
#' @return
#' \describe{
#' \item{$D}{List of data.frame which contains the information of the map you input and the results of RGWAS (-log10(p)) which correspond to the map for each tested effect.}
#' \item{$thres}{A matrix which contains the information of threshold determined by FDR = 0.05. (each trait x each tested effect)}
#' \item{$EMM.res}{This output is a list which contains the information about the results of "EMM" perfomed at first in regular GWAS.
#' If you want to know details, see the description for the function "EMM1" or "EMM2".}
#' }
#'
#'
#' @details P-value for each marker is calculated by performing F-test
#' against the F-value as follows (Kennedy et al., 1992).
#'
#' \deqn{F = \frac { ( L' \hat { b } )' [ L' ( X' H ^ { - 1 } X ) ^ { - 1 }
#' L ] ^ { - 1 } ( L' \hat { b } ) } { f \hat { \sigma }_ { u } ^ { 2 } },}
#'
#' where \eqn{b} is the vector of coefficients of the fixed effects, which combines
#' \eqn{\beta}, \eqn{\alpha _ {i}}, \eqn{v} in the horizontal direction and \eqn{L}
#' is a matrix to indicate which effects in \eqn{b} are tested.
#' \eqn{H} is calculated by dividing the estimated variance-covariance
#' matrix for the phenotypic values by \eqn{\sigma _ { u } ^ { 2 }},
#' and is calculated by \eqn{H = Z K Z' + \hat{\lambda} I}.
#' \eqn{\hat{\lambda}} is the maximum likelihood estimator
#' of the ratio between the residual variance and the additive genetic variance.
#' \eqn{\hat{b}} is the maximum likelihood estimator of \eqn{b}
#' and is calculated by \eqn{\hat { b } = ( X' H ^ { - 1 } X ) ^ { - 1 } X' H ^ { - 1 } y }.
#' \eqn{f} is the number of the fixed effects to be tested, and
#' \eqn{\hat { \sigma }_ { u } ^ { 2 }} is estimated by the following formula.
#' \deqn{\hat { \sigma }_ { u } ^ { 2 } = \frac { ( y - X \hat { b } )' H ^ { - 1 } ( y - X \hat { b } ) } { n - p },}
#' where \eqn{n} is the sample size and \eqn{p} is the number of the all fixed effects.
#' We calculated each p-value using the fact that the above F-value follows
#' the F distribution with the degree of freedom (\eqn{f},\eqn{n - p}).
#'
#' @references
#' Kennedy, B.W., Quinton, M. and van Arendonk, J.A. (1992) Estimation of effects of single genes on quantitative traits. J Anim Sci. 70(7): 2000-2012.
#'
#' Storey, J.D. and Tibshirani, R. (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci. 100(16): 9440-9445.
#'
#' Yu, J. et al. (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet. 38(2): 203-208.
#'
#' Kang, H.M. et al. (2008) Efficient Control of Population Structure in Model Organism Association Mapping. Genetics. 178(3): 1709-1723.
#'
#' Kang, H.M. et al. (2010) Variance component model to account for sample structure in genome-wide association studies. Nat Genet. 42(4): 348-354.
#'
#' Zhang, Z. et al. (2010) Mixed linear model approach adapted for genome-wide association studies. Nat Genet. 42(4): 355-360.
#'
#' Endelman, J.B. (2011) Ridge Regression and Other Kernels for Genomic Selection with R Package rrBLUP. Plant Genome J. 4(3): 250.
#'
#' Endelman, J.B. and Jannink, J.L. (2012) Shrinkage Estimation of the Realized Relationship Matrix. G3 Genes, Genomes, Genet. 2(11): 1405-1413.
#'
#' Zhou, X. and Stephens, M. (2012) Genome-wide efficient mixed-model analysis for association studies. Nat Genet. 44(7): 821-824.
#'
#' Jombart, T., Devillard, S. and Balloux, F. (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11(1), 94.
#'
#' @example R/examples/RGWAS.normal.interaction_example.R
#'
#'
#'
RGWAS.normal.interaction <- function(pheno, geno, ZETA = NULL, package.MM = "gaston",
covariate = NULL, covariate.factor = NULL,
structure.matrix = NULL, interaction.with.SNPs = NULL,
interaction.mat.method = "PCA", n.interaction.element = 1,
interaction.group = NULL, n.interaction.group = 3,
interaction.group.method = "find.clusters", n.PC.dapc = 1,
test.method.interaction = "simultaneous",
n.PC = 0, min.MAF = 0.02, P3D = TRUE,
n.core = 1, parallel.method = "mclapply",
sig.level = 0.05, method.thres = "BH", plot.qq = TRUE, plot.Manhattan = TRUE, plot.method = 1,
plot.col1 = c("dark blue", "cornflowerblue"), plot.col2 = 1,
plot.type = "p", plot.pch = 16, saveName = NULL, main.qq = NULL,
main.man = NULL, plot.add.last = FALSE, return.EMM.res = FALSE, optimizer = "nlminb",
thres = TRUE, skip.check = FALSE, verbose = TRUE,
verbose2 = FALSE, count = TRUE, time = TRUE) {
if (is.null(interaction.with.SNPs) & (n.interaction.element == 0)) {
results <- RGWAS.normal(
pheno = pheno, geno = geno, ZETA = ZETA, package.MM = package.MM,
covariate = covariate, covariate.factor = covariate.factor,
structure.matrix = structure.matrix, n.PC = n.PC, min.MAF = min.MAF,
P3D = P3D, n.core = n.core, parallel.method = parallel.method,
sig.level = sig.level, method.thres = method.thres, plot.qq = plot.qq,
plot.Manhattan = plot.Manhattan, plot.method = plot.method,
plot.col1 = plot.col1, plot.col2 = plot.col2, plot.type = plot.type,
plot.pch = plot.pch, saveName = saveName, main.qq = main.qq,
main.man = main.man, plot.add.last = plot.add.last,
return.EMM.res = return.EMM.res, optimizer = optimizer,
thres = thres, skip.check = skip.check, verbose = verbose,
verbose2 = verbose2, count = count, time = time
)
} else {
#### The start of the RGWAS function ####
start <- Sys.time()
#### Some settings to perform RGWAS ####
if (verbose2) {
welcome_to_RGWAS()
}
### For phenotype ###
n.sample.pheno <- nrow(pheno)
n.pheno <- ncol(pheno) - 1
pheno.ix <- 2:ncol(pheno)
pheno.names <- colnames(pheno)[2:ncol(pheno)]
lines.name.pheno <- as.character(pheno[, 1])
### For covariate ###
X0 <- matrix(1, n.sample.pheno, 1)
colnames(X0) <- "Intercept"
rownames(X0) <- lines.name.pheno
if (!is.null(covariate)) {
p1 <- ncol(covariate)
X0 <- cbind(X0, scale(covariate))
}
if (!is.null(covariate.factor)) {
covariate.factor <- data.frame(covariate.factor)
p2 <- ncol(covariate.factor)
for (i in 1:p2) {
cov.fac.now <- covariate.factor[, i]
if (length(unique(cov.fac.now)) > 1) {
model.mat.now <- model.matrix(~ x - 1, data.frame(x = cov.fac.now))
colnames(model.mat.now) <- paste0("cov.fac.", i, "_", 1:length(unique(cov.fac.now)))
X0 <- cbind(X0, model.mat.now[, -length(unique(cov.fac.now))])
}
}
}
if (!is.null(structure.matrix)) {
colnames(structure.matrix) <- paste0("subpop", 1:ncol(structure.matrix))
X0 <- cbind(X0, structure.matrix)
n.PC <- 0
}
### For genotype ###
geno <- geno[order(geno[, 2], geno[, 3]), ]
lines.name.geno <- colnames(geno)[-c(1:3)]
M0 <- t(geno[, -c(1:3)])
map <- geno[, 1:3]
marker <- as.character(map[, 1])
chr <- map[, 2]
if (!is.numeric(chr)) {
stop("Chromosome numbers should be `numeric` (not `character`) !!")
}
chr.tab <- table(chr)
chr.max <- length(chr.tab)
chr.cum <- cumsum(chr.tab)
pos <- as.double(map[, 3])
cum.pos <- pos
if (length(chr.tab) != 1) {
for (i in 1:(chr.max - 1)) {
cum.pos[(chr.cum[i] + 1):(chr.cum[i + 1])] <- pos[(chr.cum[i] + 1):(chr.cum[i + 1])] + cum.pos[chr.cum[i]]
}
}
n.mark <- ncol(M0)
rownames(M0) <- lines.name.geno
### Match phenotype and genotype ###
pheno.mat <- as.matrix(pheno[, -1, drop = FALSE])
rownames(pheno.mat) <- lines.name.pheno
if (skip.check) {
pheno.mat.modi <- pheno.mat
match.modi <- 1:nrow(pheno.mat.modi)
pheno.match <- pheno[match.modi, ]
M <- M0
} else {
modification.res <- modify.data(pheno.mat = pheno.mat, geno.mat = M0,
pheno.labels = NULL, geno.names = NULL,
map = NULL, return.ZETA = is.null(ZETA),
return.GWAS.format = FALSE)
pheno.mat.modi <- modification.res$pheno.modi
match.modi <- match(rownames(pheno.mat.modi), pheno[, 1])
pheno.match <- pheno[match.modi, ]
M <- modification.res$geno.modi
}
n.line <- nrow(M)
X <- as.matrix(X0[match.modi, ])
if (is.null(ZETA)) {
if (skip.check) {
K.A <- calcGRM(M)
Z.A <- design.Z(pheno.labels = pheno.match[, 1],
geno.names = rownames(K.A))
ZETA <- list(A = list(Z = Z.A,
K = K.A))
} else {
ZETA <- modification.res$ZETA
}
} else {
ZETA.check <- any(unlist(lapply(ZETA, function(x) {
(is.null(rownames(x$Z))) | (is.null(colnames(x$Z)))
})))
if (ZETA.check) {
stop("No row names or column names for design matrix Z!!
Please fill them with row : line (variety) names for phenotypes.
and column : line (variety) names for genotypes.")
}
ZETA <- lapply(ZETA, function(x) {
Z.match.pheno.no <- match(rownames(pheno.mat.modi), rownames(x$Z))
Z.match.geno.no <- match(rownames(M), rownames(x$Z))
Z.modi <- x$Z[Z.match.pheno.no, Z.match.geno.no]
K.modi <- x$K[Z.match.geno.no, Z.match.geno.no]
return(list(Z = Z.modi, K = K.modi))
})
}
K.A <- ZETA[[1]]$K
Z.A <- ZETA[[1]]$Z
if (!is.null(interaction.with.SNPs)) {
if (is.null(rownames(interaction.with.SNPs))) {
stopifnot(nrow(M0) == nrow(interaction.with.SNPs))
rownames(interaction.with.SNPs) <- lines.name.geno
}
interaction.with.SNPs <- interaction.with.SNPs[rownames(M), , drop = FALSE]
stopifnot(all(!is.na(interaction.with.SNPs)))
n.interaction.element <- ncol(interaction.with.SNPs)
} else {
stopifnot(n.interaction.element >= 1)
n.interaction.element <- floor(n.interaction.element)
if (interaction.mat.method == "PCA") {
interaction.with.SNPs0 <- prcomp(x = K.A)$x
} else {
if (is.null(interaction.group)) {
stopifnot(n.interaction.group >= 1)
n.interaction.group <- floor(n.interaction.group)
if (interaction.group.method == "find.clusters") {
interaction.group <- adegenet::find.clusters(x = K.A,
n.pca = n.PC.dapc,
n.clust = n.interaction.group)$grp
} else if (interaction.group.method == "pam") {
interaction.group <- cluster::pam(x = K.A,
k = n.interaction.group)$clustering
} else {
stop("We only offer the following two clustering methods: 'find.clusters' or 'pam'!")
}
} else {
if (is.null(names(interaction.group))) {
stopifnot(nrow(M0) == length(interaction.group))
names(interaction.group) <- lines.name.geno
}
interaction.group <- interaction.group[rownames(M)]
}
interaction.group <- factor(interaction.group)
if (interaction.mat.method == "LDA") {
ldaRes <- MASS::lda(x = K.A, grouping = interaction.group)
interaction.with.SNPs0 <- K.A %*% ldaRes$scaling
} else if (interaction.mat.method == "GROUP") {
interaction.with.SNPs0 <- as.matrix(model.matrix(object = ~ interaction.group - 1))
rownames(interaction.with.SNPs0) <- names(interaction.group)
colnames(interaction.with.SNPs0) <- levels(interaction.group)
} else if (interaction.mat.method == "DAPC") {
dapcRes <- adegenet::dapc(x = K.A, grp = interaction.group,
n.pca = n.PC.dapc, n.da = nlevels(interaction.group) - 1)
interaction.with.SNPs0 <- dapcRes$ind.coord
} else {
stop(paste0("We only offer the following methods for `interaction.mat.method`: ",
"'PCA', 'LDA', 'GROUP', 'DAPC'."))
}
}
if (ncol(interaction.with.SNPs0) > n.interaction.element) {
interaction.with.SNPs <- interaction.with.SNPs0[, 1:n.interaction.element, drop = FALSE]
} else {
interaction.with.SNPs <- interaction.with.SNPs0
n.interaction.element <- ncol(interaction.with.SNPs)
}
}
if (is.null(rownames(interaction.with.SNPs))) {
rownames(interaction.with.SNPs) <- rownames(M)
}
### For covariates (again) ###
if (n.PC > 0) {
eigen.K.A <- eigen(K.A)
eig.K.vec <- eigen.K.A$vectors
PC.part <- Z.A %*% eig.K.vec[, 1:n.PC]
colnames(PC.part) <- paste0("n.PC_", 1:n.PC)
X <- cbind(X, PC.part)
}
X <- make.full(X)
### Some settings ###
trait.names <- colnames(pheno)[pheno.ix]
if (interaction.mat.method == "GROUP") {
include.SNP.effect <- FALSE
} else {
include.SNP.effect <- TRUE
}
if (test.method.interaction == "simultaneous") {
test.names <- "All"
} else if (test.method.interaction == "snpSeparate") {
if (include.SNP.effect) {
test.names <- c("SNP", "Interaction")
} else {
test.method.interaction <- "simultaneous"
test.names <- "All"
message("`test.method.interaction` is replaced by 'simultaneous' since you use 'GROUP' method!")
}
} else if (test.method.interaction == "oneByOne") {
if (include.SNP.effect) {
test.names <- c("SNP", colnames(interaction.with.SNPs))
} else {
test.names <- colnames(interaction.with.SNPs)
}
}
n.test <- length(test.names)
all.scores <- array(data = NA,
dim = c(n.mark, n.pheno, n.test),
dimnames = list(Marker = colnames(M),
Trait = trait.names,
Test = test.names))
if (thres) {
thresholds <- array(data = NA,
dim = c(n.test, n.pheno),
dimnames = list(Test = test.names,
Trait = trait.names))
}
if (n.pheno == 0) {
stop("No phenotypes.")
}
##### START RGWAS for each phenotype #####
for (pheno.no in 1:n.pheno) {
trait.name <- trait.names[pheno.no]
if (verbose) {
print(paste("GWAS for trait:", trait.name))
}
y0 <- pheno.match[, pheno.ix[pheno.no]]
not.NA <- which(!is.na(y0))
y <- y0[not.NA]
n <- length(y)
X.now <- X[not.NA, , drop = FALSE]
ZETA.now <- lapply(ZETA, function(x) list(Z = x$Z[not.NA, ], K = x$K))
if (is.diag(x = Z.A)) {
M.now <- M[not.NA, , drop = FALSE]
} else {
Z.A.nonNA.sp <- as(object = Z.A[not.NA, ], Class = "sparseMatrix")
which.one.Z.A <- apply(Z.A.nonNA.sp == 1, 1, which)
overlap.Z.A <- is.list(which.one.Z.A)
if (!overlap.Z.A) {
M.now <- M[which.one.Z.A, ]
} else {
M.now <- as.matrix(Z.A.nonNA.sp %*% M)
}
}
interaction.with.SNPs.now <- interaction.with.SNPs[rownames(M.now), , drop = FALSE]
#### Calculate Hinv at first ####
if (P3D) {
EMM.res0 <- EM3.general(y = y, X0 = X.now, ZETA = ZETA.now,
package = package.MM,
n.core = n.core,
REML = TRUE, pred = FALSE,
return.u.always = FALSE,
return.u.each = FALSE,
return.Hinv = TRUE)
Hinv <- EMM.res0$Hinv
eigen.G <- NULL
if (verbose) {
print("Variance components estimated. Testing markers.")
}
} else {
spI <- diag(n)
if (length(ZETA) > 1) {
EMM.res0 <- EM3.general(y = y, X0 = X.now, ZETA = ZETA.now,
package = package.MM,
REML = TRUE, pred = FALSE,
return.u.always = FALSE,
return.u.each = FALSE,
return.Hinv = FALSE)
weights <- EMM.res0$weights
eigen.G <- spectralG.cpp(ZETA = ZETA.now, X = X.now, weights = weights,
return.G = TRUE, return.SGS = FALSE)[[1]]
} else {
eigen.G <- spectralG.cpp(ZETA = ZETA.now, X = X.now, return.G = TRUE,
return.SGS = FALSE)[[1]]
}
Hinv <- NULL
}
#### Calculating the value of -log10(p) for each SNPs ####
if ((n.core > 1) & requireNamespace("parallel", quietly = TRUE)) {
scores <- score.calc.int.MC(M.now = M.now, ZETA.now = ZETA.now, y = y,
X.now = X.now, package.MM = package.MM,
interaction.with.SNPs.now = interaction.with.SNPs.now,
test.method.interaction = test.method.interaction,
include.SNP.effect = include.SNP.effect, Hinv = Hinv,
P3D = P3D, eigen.G = eigen.G, optimizer = optimizer,
n.core = n.core, parallel.method = parallel.method,
min.MAF = min.MAF, count = count)
} else {
scores <- score.calc.int(M.now, ZETA.now = ZETA.now, y = y, X.now = X.now, package.MM = package.MM,
interaction.with.SNPs.now = interaction.with.SNPs.now,
test.method.interaction = test.method.interaction,
include.SNP.effect = include.SNP.effect,
Hinv = Hinv, n.core = n.core, P3D = P3D,
optimizer = optimizer, eigen.G = eigen.G,
min.MAF = min.MAF, count = count)
}
if (any(is.infinite(scores))) {
scores[is.infinite(scores)] <- NA
warning("There are some infinite p-values. They were converted to NAs.")
}
for (test.no in 1:n.test) {
test.name <- test.names[test.no]
if (plot.qq) {
if (verbose) {
print("Now Plotting (Q-Q plot). Please Wait.")
}
if (is.null(saveName)) {
if (length(grep("RStudio", names(dev.cur()))) == 0) {
if (dev.cur() == dev.next()) {
dev.new()
}
else {
dev.set(dev.next())
}
}
qq(scores[, test.no])
if (is.null(main.qq)) {
title(main = paste0(trait.name, " - ", test.name))
} else {
title(main = main.qq)
}
} else {
png(paste0(saveName, trait.name, "_",
test.name, "_qq.png"))
qq(scores[, test.no])
if (is.null(main.qq)) {
title(main = paste0(trait.name, " - ", test.name))
} else {
title(main = main.qq)
}
dev.off()
}
}
if (plot.Manhattan) {
if (verbose) {
print("Now Plotting (Manhattan plot). Please Wait.")
}
if (is.null(saveName)) {
if (length(grep("RStudio", names(dev.cur()))) == 0) {
if (dev.cur() == dev.next()) {
dev.new()
}
else {
dev.set(dev.next())
}
}
if (plot.method == 1) {
manhattan(input = cbind(map, scores[, test.no]), sig.level = sig.level, method.thres = method.thres, plot.col1 = plot.col1,
plot.type = plot.type, plot.pch = plot.pch)
} else {
manhattan2(input = cbind(map, scores[, test.no]), sig.level = sig.level, method.thres = method.thres, plot.col2 = plot.col2,
plot.type = plot.type, plot.pch = plot.pch)
}
if (is.null(main.man)) {
title(main = paste0(trait.name, " - ", test.name))
} else {
title(main = main.man)
}
} else {
png(paste0(saveName, trait.name, "_",
test.name, "_manhattan.png"), width = 800)
if (plot.method == 1) {
manhattan(input = cbind(map, scores[, test.no]), sig.level = sig.level, method.thres = method.thres, plot.col1 = plot.col1,
plot.type = plot.type, plot.pch = plot.pch)
} else {
manhattan2(input = cbind(map, scores[, test.no]), sig.level = sig.level, method.thres = method.thres, plot.col2 = plot.col2,
plot.type = plot.type, plot.pch = plot.pch)
}
if (is.null(main.man)) {
title(main = paste0(trait.name, " - ", test.name))
} else {
title(main = main.man)
}
if (!(plot.add.last & (pheno.no == n.pheno))) {
dev.off()
}
}
}
if (thres) {
thresholds[test.no, pheno.no] <- try(CalcThreshold(cbind(map, scores[, test.no]),
sig.level = sig.level, method = method.thres),
silent = TRUE)
}
}
all.scores[, pheno.no, ] <- scores
}
res.Data <- apply(X = all.scores, MARGIN = 3,
FUN = function(x) {
return(data.frame(map, x))
})
end <- Sys.time()
if (time) {
print(end - start)
}
results <- list(D = res.Data)
if (thres) {
results <- c(results, list(thres = thresholds))
}
if (return.EMM.res) {
results <- c(results, list(EMM.res = EMM.res0))
}
}
return(results)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.