#' Optimization of sample configurations for spatial trend identification and estimation (III)
#'
#' Optimize a sample configuration for spatial trend identification and estimation. An utility function _U_ is
#' defined so that the sample reproduces the bivariate association/correlation between the covariates, as well
#' as their marginal distribution (__ACDC__). The utility function is obtained aggregating two objective
#' functions: __CORR__ and __DIST__.
#'
# @inheritParams spJitter
#' @template spSANN_doc
#' @template ACDC_doc
#' @template MOOP_doc
#' @template spJitter_doc
#'
#' @details
#' Visit the help pages of \code{\link[spsann]{optimCORR}} and \code{\link[spsann]{optimDIST}} to see the
#' details of the objective functions that compose __ACDC__.
#'
#' @return
#' \code{optimACDC} returns an object of class \code{OptimizedSampleConfiguration}: the optimized sample
#' configuration with details about the optimization.
#'
#' \code{objACDC} returns a numeric value: the energy state of the sample configuration -- the objective
#' function value.
#'
#' @note
#' This function was derived with modifications from the method known as the _conditioned Latin Hypercube
#' sampling_ originally proposed by Minasny and McBratney (2006), and implemented in the R-package
#' __[clhs](https://CRAN.R-project.org/package=clhs)__ by Pierre Roudier.
#'
#' @references
#' Minasny, B.; McBratney, A. B. A conditioned Latin hypercube method for sampling in the presence of
#' ancillary information. _Computers & Geosciences_, v. 32, p. 1378-1388, 2006.
#'
#' Minasny, B.; McBratney, A. B. Conditioned Latin Hypercube Sampling for calibrating soil sensor data to soil
#' properties. Chapter 9. Viscarra Rossel, R. A.; McBratney, A. B.; Minasny, B. (Eds.) _Proximal Soil Sensing_.
#' Amsterdam: Springer, p. 111-119, 2010.
#'
#' Roudier, P.; Beaudette, D.; Hewitt, A. A conditioned Latin hypercube sampling algorithm incorporating
#' operational constraints. _5th Global Workshop on Digital Soil Mapping_. Sydney, p. 227-231, 2012.
#'
#' @author Alessandro Samuel-Rosa \email{alessandrosamuelrosa@@gmail.com}
#' @seealso \code{\link[pedometrics]{cramer}}
#' @aliases optimACDC objACDC ACDC
#' @export
#' @examples
#' #####################################################################
#' # NOTE: The settings below are unlikely to meet your needs. #
#' #####################################################################
#' data(meuse.grid, package = "sp")
#' candi <- meuse.grid[1:1000, 1:2]
#' nadir <- list(sim = 10, seeds = 1:10)
#' utopia <- list(user = list(DIST = 0, CORR = 0))
#' covars <- meuse.grid[1:1000, 5]
#' schedule <- scheduleSPSANN(
#' chains = 1, initial.temperature = 5, x.max = 1540, y.max = 2060,
#' x.min = 0, y.min = 0, cellsize = 40)
#' set.seed(2001)
#' res <- optimACDC(
#' points = 10, candi = candi, covars = covars, nadir = nadir, use.coords = TRUE,
#' utopia = utopia, schedule = schedule, weights = list(DIST = 1/2, CORR = 1/2))
#' objSPSANN(res) - objACDC(
#' points = res, candi = candi, covars = covars, use.coords = TRUE, nadir = nadir,
#' utopia = utopia, weights = list(DIST = 1/2, CORR = 1/2))
# MAIN FUNCTION ###############################################################################################
optimACDC <-
function (points, candi,
# DIST and CORR
covars, strata.type = "area", use.coords = FALSE,
# SPSANN
schedule, plotit = FALSE, track = FALSE,
boundary, progress = "txt", verbose = FALSE,
# MOOP
weights,
# weights = list(CORR = 0.5, DIST = 0.5),
nadir = list(sim = NULL, seeds = NULL, user = NULL, abs = NULL),
utopia = list(user = NULL, abs = NULL)) {
# Objective function name
objective <- "ACDC"
# Check spsann arguments
eval(.check_spsann_arguments())
# Check other arguments
check <- .optimACDCcheck(
candi = candi, covars = covars, use.coords = use.coords, strata.type = strata.type)
if (!is.null(check)) stop (check, call. = FALSE)
# Set plotting options
eval(.plotting_options())
# Prepare points and candi
eval(.prepare_points())
# Prepare for jittering
eval(.prepare_jittering())
# Prepare 'covars' and create the starting sample matrix 'sm'
eval(.prepare_acdc_covars())
# Base data and initial energy state
pcm <- .corCORR(obj = covars, covars.type = covars.type)
scm <- .corCORR(obj = sm, covars.type = covars.type)
pop_prop <- .strataACDC(
n.pts = n_pts + n_fixed_pts, strata.type = strata.type, covars = covars, covars.type = covars.type)
nadir <- .nadirACDC(
n.pts = n_pts + n_fixed_pts, # The simulation algorithm does not accoun for existing fixed sample points.
n.cov = n_cov, n.candi = n_candi, pcm = pcm, nadir = nadir, covars.type = covars.type, covars = covars,
pop.prop = pop_prop, candi = candi)
utopia <- .utopiaACDC(utopia = utopia)
energy0 <- .objACDC(
sm = sm, n.cov = n_cov, pop.prop = pop_prop, pcm = pcm, scm = scm, nadir = nadir, weights = weights,
n.pts = n_pts + n_fixed_pts, utopia = utopia, covars.type = covars.type)
# Other settings for the simulated annealing algorithm
old_sm <- sm
new_sm <- sm
best_sm <- sm
old_scm <- scm
new_scm <- scm
best_scm <- scm
old_energy <- energy0
best_energy <- data.frame(obj = Inf, CORR = Inf, DIST = Inf)
actual_temp <- schedule$initial.temperature
k <- 0 # count the number of jitters
# Set progress bar
eval(.set_progress())
# Initiate the annealing schedule
for (i in 1:schedule$chains) {
n_accept <- 0
for (j in 1:schedule$chain.length) { # Initiate one chain
for (wp in 1:n_pts) { # Initiate loop through points
k <- k + 1
# Plotting and jittering
eval(.plot_and_jitter())
# Update sample and correlation matrices, and energy state
new_sm[wp, ] <- covars[new_conf[wp, 1], ]
new_scm <- .corCORR(obj = new_sm, covars.type = covars.type)
new_energy <- .objACDC(
sm = new_sm, pop.prop = pop_prop, scm = new_scm, nadir = nadir, weights = weights, pcm = pcm,
n.pts = n_pts + n_fixed_pts, n.cov = n_cov, utopia = utopia, covars.type = covars.type)
# Avoid the following error:
# Error in if (new_energy[1] <= old_energy[1]) { :
# missing value where TRUE/FALSE needed
# Source: http://stackoverflow.com/a/7355280/3365410
# ASR: The reason for the error is unknown to me.
if (is.na(new_energy[1])) {
new_energy <- old_energy
new_conf <- old_conf
new_sm <- old_sm
new_scm <- old_scm
}
# Evaluate the new system configuration
accept <- .acceptSPSANN(old_energy[[1]], new_energy[[1]], actual_temp)
if (accept) {
old_conf <- new_conf
old_energy <- new_energy
old_sm <- new_sm
old_scm <- new_scm
n_accept <- n_accept + 1
} else {
new_energy <- old_energy
new_conf <- old_conf
new_sm <- old_sm
new_scm <- old_scm
}
if (track) energies[k, ] <- new_energy
# Record best energy state
if (new_energy[[1]] < best_energy[[1]] / 1.0000001) {
best_k <- k
best_conf <- new_conf
best_energy <- new_energy
best_old_energy <- old_energy
old_conf <- old_conf
best_sm <- new_sm
best_old_sm <- old_sm
best_scm <- new_scm
best_old_scm <- old_scm
}
# Update progress bar
eval(.update_progress())
} # End loop through points
} # End the chain
# Check the proportion of accepted jitters in the first chain
eval(.check_first_chain())
# Count the number of chains without any change in the objective function.
# Restart with the previously best configuration if it exists.
if (n_accept == 0) {
no_change <- no_change + 1
if (no_change > schedule$stopping) {
# if (new_energy[[1]] > best_energy[[1]] * 1.000001) {
# old_conf <- old_conf
# new_conf <- best_conf
# old_energy <- best_old_energy
# new_energy <- best_energy
# new_sm <- best_sm
# new_scm <- best_scm
# old_sm <- best_old_sm
# old_scm <- best_old_scm
# no_change <- 0
# cat("\nrestarting with previously best configuration\n")
# } else {
break
# }
}
if (verbose) {
cat("\n", no_change, "chain(s) with no improvement... stops at", schedule$stopping, "\n")
}
} else {
no_change <- 0
}
# Update control parameters
# Testing new parametes 'x_min0' and 'y_min0' (used with finite 'candi')
actual_temp <- actual_temp * schedule$temperature.decrease
x.max <- x_max0 - (i / schedule$chains) * (x_max0 - x.min) + cellsize[1] + x_min0
y.max <- y_max0 - (i / schedule$chains) * (y_max0 - y.min) + cellsize[2] + y_min0
} # End the annealing schedule
# Prepare output
eval(.prepare_output())
}
# INTERNAL FUNCTION - CHECK ARGUMENTS ##########################################
# candi: candidate locations
# covars: covariates
# use.coords: should the coordinates be used
# strata.type: type of stratification of numeric covariates
.optimACDCcheck <-
function (candi, covars, use.coords, strata.type) {
# covars
if (is.vector(covars)) {
if (use.coords == FALSE) {
res <- "'covars' must have two or more columns"
return (res)
}
if (nrow(candi) != length(covars)) {
res <- "'candi' and 'covars' must have the same number of rows"
return (res)
}
} else {
if (nrow(candi) != nrow(covars)) {
res <- "'candi' and 'covars' must have the same number of rows"
return (res)
}
}
# strata.type
# aa <- match(strata.type, c("area", "range"))
if (!strata.type %in% c("area", "range")) {
res <- paste("'strata.type = ", strata.type, "' is not supported", sep = "")
return (res)
}
}
# INTERNAL FUNCTION - BREAKS FOR NUMERIC COVARIATES ############################
# Now we define the breaks and the distribution, and return it as a list.
# Quantiles now honour the fact that the data are discontinuous.
# NOTE: there might be a problem when the number of unique values is small (3)
.strataACDC <-
function (n.pts, covars, strata.type, covars.type) {
n_cov <- ncol(covars)
if (covars.type == "factor") {
# Compute the proportion of population points per marginal factor level
res <- lapply(covars, function(x) table(x) / nrow(covars))
} else { # Numeric covariates
# equal area strata
if (strata.type == "area") {
# Compute the break points (discrete sample quantiles)
probs <- seq(0, 1, length.out = n.pts + 1)
breaks <- lapply(covars, stats::quantile, probs, na.rm = TRUE, type = 3)
} else { # equal range strata
# Compute the break points
breaks <- lapply(1:n_cov, function(i)
seq(min(covars[, i]), max(covars[, i]), length.out = n.pts + 1))
# Find and replace by the closest population value
d <- lapply(1:n_cov, function(i)
SpatialTools::dist2(matrix(breaks[[i]]), matrix(covars[, i])))
d <- lapply(1:n_cov, function(i) apply(d[[i]], 1, which.min))
breaks <- lapply(1:n_cov, function(i) breaks[[i]] <- covars[d[[i]], i])
}
# Keep only the unique break points
breaks <- lapply(breaks, unique)
# Compute the proportion of population points per marginal sampling strata
count <- lapply(1:n_cov, function (i)
graphics::hist(covars[, i], breaks[[i]], plot = FALSE)$counts
)
prop <- lapply(1:n_cov, function (i) count[[i]] / sum(count[[i]]))
# Output
res <- list(breaks = breaks, prop = prop)
}
return (res)
}
# INTERNAL FUNCTION - COMPUTE THE NADIR VALUE ##################################
.nadirACDC <-
function (n.pts, n.cov, n.candi, nadir, candi, covars, pcm, pop.prop, covars.type) {
# Simulate the nadir point
if (!is.null(nadir$sim) && !is.null(nadir$seeds)) {
m <- paste("simulating ", nadir$sim, " nadir values...", sep = "")
message(m)
# Set variables
nadirDIST <- vector()
nadirCORR <- vector()
# Begin the simulation
for (i in 1:nadir$sim) {
set.seed(nadir$seeds[i])
pts <- sample(1:n.candi, n.pts)
sm <- covars[pts, ]
scm <- .corCORR(obj = sm, covars.type = covars.type)
nadirDIST[i] <- .objDIST(
sm = sm, n.pts = n.pts, n.cov = n.cov, pop.prop = pop.prop, covars.type = covars.type)
nadirCORR[i] <- .objCORR(scm = scm, pcm = pcm)
}
# Prepare output
res <- list(DIST = mean(nadirDIST), CORR = mean(nadirCORR))
} else {
# User-defined nadir values
if (!is.null(nadir$user)) {
res <- list(DIST = nadir$user$DIST, CORR = nadir$user$CORR)
} else {
if (!is.null(nadir$abs)) {
message("sorry but the nadir point cannot be calculated")
}
}
}
return (res)
}
# INTERNAL FUNCTION - CALCULATE THE CRITERION VALUE ############################
# This function is used to calculate the criterion value of ACDC.
# It calculates, scales, weights, and aggregates the objective function values.
# Scaling is done using the upper-lower bound approach.
# Aggregation is done using the weighted sum method.
.objACDC <-
function (sm, n.cov, nadir, weights, n.pts, utopia, pcm, scm, covars.type, pop.prop) {
# DIST
obj_dist <- .objDIST(
sm = sm, n.pts = n.pts, n.cov = n.cov, pop.prop = pop.prop, covars.type = covars.type)
obj_dist <- (obj_dist - utopia$DIST) / (nadir$DIST - utopia$DIST)
obj_dist <- obj_dist * weights$DIST
# CORR
obj_cor <- .objCORR(scm = scm, pcm = pcm)
obj_cor <- (obj_cor - utopia$CORR) / (nadir$CORR - utopia$CORR)
obj_cor <- obj_cor * weights$CORR
# Prepare output, a data.frame with the weighted sum in the first column followed by the values of the
# constituent objective functions (IN ALPHABETICAL ORDER).
res <- data.frame(
obj = obj_dist + obj_cor,
CORR = obj_cor,
DIST = obj_dist)
return (res)
}
# INTERNAL FUNCTION - PREPARE THE UTOPIA POINT #################################
.utopiaACDC <-
function (utopia) {
if (!is.null(unlist(utopia$user))) {
list(CORR = utopia$user$CORR, DIST = utopia$user$DIST)
} else {
message("sorry but the utopia point cannot be calculated")
}
}
# CALCULATE OBJECTIVE FUNCTION VALUE ###########################################
#' @rdname optimACDC
#' @export
objACDC <-
function (points, candi,
# DIST and CORR
covars, strata.type = "area", use.coords = FALSE,
# MOOP
weights,
# weights = list(CORR = 0.5, DIST = 0.5),
nadir = list(sim = NULL, seeds = NULL, user = NULL, abs = NULL),
utopia = list(user = NULL, abs = NULL)) {
# Check arguments
check <- .optimACDCcheck(
candi = candi, covars = covars, use.coords = use.coords, strata.type = strata.type)
if (!is.null(check)) stop (check, call. = FALSE)
# Prepare points and candi
eval(.prepare_points())
# Prepare 'covars' and create the starting sample matrix 'sm'
eval(.prepare_acdc_covars())
# Compute base data
pcm <- .corCORR(obj = covars, covars.type = covars.type)
scm <- .corCORR(obj = sm, covars.type = covars.type)
pop_prop <- .strataACDC(
n.pts = n_pts, strata.type = strata.type, covars = covars, covars.type = covars.type)
nadir <- .nadirACDC(
n.pts = n_pts, n.cov = n_cov, n.candi = n_candi, pcm = pcm, nadir = nadir, candi = candi,
covars = covars, pop.prop = pop_prop, covars.type = covars.type)
utopia <- .utopiaACDC(utopia = utopia)
# Compute the energy state
energy <- .objACDC(
sm = sm, pop.prop = pop_prop, covars.type = covars.type, weights = weights, pcm = pcm, scm = scm,
n.pts = n_pts, n.cov = n_cov, utopia = utopia, nadir = nadir)
return (energy)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.