#' @title Estimating the matrix time series CP-factor model
#' @description \code{CP_MTS()} deals with the estimation of the CP-factor model for matrix time series:
#' \deqn{{\bf{Y}}_t = {\bf A \bf X}_t{\bf B}' +
#' {\boldsymbol{\epsilon}}_t, } where \eqn{{\bf X}_t = {\rm diag}(x_{t,1},\ldots,x_{t,d})} is a \eqn{d \times d}
#' unobservable diagonal matrix, \eqn{ {\boldsymbol{\epsilon}}_t }
#' is a \eqn{p \times q} matrix white noise, \eqn{{\bf A}} and \eqn{{\bf B}} are, respectively, \eqn{p
#' \times d} and \eqn{q \times d} unknown constant matrices with their columns being
#' unit vectors, and \eqn{1\leq d < \min(p,q)} is an unknown integer.
#' Let \eqn{{\rm rank}(\mathbf{A}) = d_1}
#' and \eqn{{\rm rank}(\mathbf{B}) = d_2} with some unknown \eqn{d_1,d_2\leq d}.
#' This function aims to estimate \eqn{d, d_1, d_2} and the loading
#' matrices \eqn{{\bf A}} and \eqn{{\bf B}} using the methods proposed in Chang
#' et al. (2023) and Chang et al. (2024).
#'
#' @details
#' All three CP-decomposition methods involve the estimation of the autocovariance of
#' \eqn{ {\bf Y}_t} and \eqn{\xi_t} at lag \eqn{k}, which is defined as follows:
#' \deqn{\hat{\bf \Sigma}_{k} = T_{\delta_1}\{\hat{\boldsymbol{\Sigma}}_{\mathbf{Y},
#' \xi}(k)\}\ \ {\rm with}\ \ \hat{\boldsymbol{\Sigma}}_{\mathbf{Y}, \xi}(k) = \frac{1}{n-k}
#' \sum_{t=k+1}^n(\mathbf{Y}_t-\bar{\mathbf{Y}})(\xi_{t-k}-\bar{\xi})\,,}
#' where \eqn{\bar{\bf Y} = n^{-1}\sum_{t=1}^n {\bf Y}_t}, \eqn{\bar{\xi}=n^{-1}\sum_{t=1}^n \xi_t}
#' and \eqn{T_{\delta_1}(\cdot)} is a threshold operator defined as
#' \eqn{T_{\delta_1}({\bf W}) = \{w_{i,j}1(|w_{i,j}|\geq \delta_1)\}} for any matrix
#' \eqn{{\bf W}=(w_{i,j})}, with the threshold level \eqn{\delta_1 \geq 0} and \eqn{1(\cdot)}
#' representing the indicator function. Chang et al. (2023) and Chang et al. (2024) suggest to choose
#' \eqn{\delta_1 = 0} when \eqn{p, q} are fixed and \eqn{\delta_1>0} when \eqn{pq \gg n}.
#'
#' The refined estimation method involves
#' \deqn{\check{\bf \Sigma}_{k} =
#' T_{\delta_2}\{\hat{\mathbf{\Sigma}}_{\check{\mathbf{Y}}}(k)\}\ \ {\rm with}
#' \ \ \hat{\mathbf{\Sigma}}_{\check{\mathbf{Y}}}(k)=\frac{1}{n-k}
#' \sum_{t=k+1}^n(\mathbf{Y}_t-\bar{\mathbf{Y}}) \otimes {\rm vec}
#' (\mathbf{Y}_{t-k}-\bar{\mathbf{Y}})\,,}
#' where \eqn{T_{\delta_2}(\cdot)} is a threshold operator with the threshold level
#' \eqn{\delta_2 \geq 0}, and \eqn{{\rm vec}(\cdot)} is a vecterization operator
#' with \eqn{{\rm vec}({\bf H})} being the \eqn{(m_1m_2)\times 1} vector obtained by stacking
#' the columns of the \eqn{m_1 \times m_2} matrix \eqn{{\bf H}}. See Section 3.2.2 of Chang
#' et al. (2023) for details.
#'
#' The unified estimation method involves
#' \deqn{\vec{\bf \Sigma}_{k}=
#' T_{\delta_3}\{\hat{\boldsymbol{\Sigma}}_{\vec{\mathbf{Y}}}(k)\}
#' \ \ {\rm with}\ \ \hat{\boldsymbol{\Sigma}}_{\vec{\mathbf{Y}}}(k)=\frac{1}{n-k}
#' \sum_{t=k+1}^n{\rm vec}({\mathbf{Y}}_t-\bar{\mathbf{Y}})\{{\rm vec}
#' (\mathbf{Y}_{t-k}-\bar{\mathbf{Y}})\}'\,,}
#' where \eqn{T_{\delta_3}(\cdot)} is a threshold operator with the threshold level
#' \eqn{\delta_3 \geq 0}. See Section 4.2 of Chang et al. (2024) for details.
#'
#'
#' @param Y An \eqn{n \times p \times q} array, where \eqn{n} is the number
#' of observations of the \eqn{p \times q} matrix time series \eqn{\{{\bf Y}_t\}_{t=1}^n}.
#' @param xi An \eqn{n \times 1} vector \eqn{\boldsymbol{\xi} = (\xi_1,\ldots, \xi_n)'},
#' where \eqn{\xi_t} represents a linear combination of \eqn{{\bf Y}_t}.
#' If \code{xi = NULL} (the default), \eqn{\xi_{t}} is determined by the PCA
#' method introduced in Section 5.1 of Chang et al. (2023). Otherwise, \code{xi}
#' can be given by the users.
#' @param Rank A list containing the following components: \code{d} representing
#' the number of columns of \eqn{{\bf A}} and \eqn{{\bf B}}, \code{d1} representing
#' the rank of \eqn{{\bf A}}, and \code{d2} representing the rank of \eqn{{\bf B}}.
#' If set to \code{NULL} (default), \eqn{d}, \eqn{d_1}, and \eqn{d_2} will be estimated.
#' Otherwise, they can be given by the users.
#' @param lag.k The time lag \eqn{K} used to calculate the nonnegative definite
#' matrices \eqn{\hat{\mathbf{M}}_1} and \eqn{\hat{\mathbf{M}}_2} when \code{method = "CP.Refined"}
#' or \code{method = "CP.Unified"}:
#' \deqn{\hat{\mathbf{M}}_1\ =\
#' \sum_{k=1}^{K} \hat{\bf \Sigma}_{k} \hat{\bf \Sigma}_{k}'\ \ {\rm and}
#' \ \ \hat{\mathbf{M}}_2\ =\ \sum_{k=1}^{K} \hat{\bf \Sigma}_{k}' \hat{\bf \Sigma}_{k}\,,
#' }
#' where \eqn{\hat{\bf \Sigma}_{k}} is an estimate of the cross-covariance between
#' \eqn{ {\bf Y}_t} and \eqn{\xi_t} at lag \eqn{k}. See 'Details'. The default is 20.
#' @param lag.ktilde The time lag \eqn{\tilde K} involved in the unified
#' estimation method [See (16) in Chang et al. (2024)], which is used
#' when \code{method = "CP.Unified"}. The default is 10.
#' @param method A string indicating which CP-decomposition method is used. Available options include:
#' \code{"CP.Direct"} (the default) for the direct estimation method
#' [See Section 3.1 of Chang et al. (2023)], \code{"CP.Refined"} for the refined estimation
#' method [See Section 3.2 of Chang et al. (2023)], and \code{"CP.Unified"} for the
#' unified estimation method [See Section 4 of Chang et al. (2024)].
#' The validity of methods \code{"CP.Direct"} and \code{"CP.Refined"} depends on the assumption
#' \eqn{d_1=d_2=d}. When \eqn{d_1,d_2 \leq d}, the method \code{"CP.Unified"} can be applied.
#' See Chang et al. (2024) for details.
#'
#' @param thresh1 Logical. If \code{FALSE} (the default), no thresholding will
#' be applied in \eqn{\hat{\bf \Sigma}_{k}}, which indicates that the threshold level
#' \eqn{\delta_1=0}. If \code{TRUE}, \eqn{\delta_1} will be set through \code{delta1}.
#' \code{thresh1} is used for all three methods. See 'Details'.
#' @param thresh2 Logical. If \code{FALSE} (the default), no thresholding will
#' be applied in \eqn{\check{\bf \Sigma}_{k}}, which indicates that the threshold level
#' \eqn{\delta_2=0}. If \code{TRUE}, \eqn{\delta_2} will be set through \code{delta2}.
#' \code{thresh2} is used only when \code{method = "CP.Refined"}. See 'Details'.
#' @param thresh3 Logical. If \code{FALSE} (the default), no thresholding will
#' be applied in \eqn{\vec{\bf \Sigma}_{k}}, which indicates that the threshold level
#' \eqn{\delta_3=0}. If \code{TRUE}, \eqn{\delta_3} will be set through \code{delta3}.
#' \code{thresh3} is used only when \code{method = "CP.Unified"}. See 'Details'.
#' @param delta1 The value of the threshold level \eqn{\delta_1}. The default is
#' \eqn{ \delta_1 = 2 \sqrt{n^{-1}\log (pq)}}.
#' @param delta2 The value of the threshold level \eqn{\delta_2}. The default is
#' \eqn{ \delta_2 = 2 \sqrt{n^{-1}\log (pq)}}.
#' @param delta3 The value of the threshold level \eqn{\delta_3}. The default is
#' \eqn{ \delta_3 = 2 \sqrt{n^{-1}\log(pq)}}.
#'
#' @return An object of class \code{"mtscp"}, which contains the following
#' components:
#' \item{A}{The estimated \eqn{p \times \hat{d}} left loading matrix \eqn{\hat{\bf A}}.}
#' \item{B}{The estimated \eqn{q \times \hat{d}} right loading matrix \eqn{\hat{\bf B}}.}
#' \item{f}{The estimated latent process \eqn{\hat{x}_{t,1},\ldots,\hat{x}_{t,\hat{d}}}.}
#' \item{Rank}{The estimated \eqn{\hat{d}_1,\hat{d}_2}, and \eqn{\hat{d}}.}
#' \item{method}{A string indicating which CP-decomposition method is used.}
#'
#'
#' @references
#' Chang, J., Du, Y., Huang, G., & Yao, Q. (2024). Identification and
#' estimation for matrix time series CP-factor models. \emph{arXiv preprint}.
#' \doi{doi:10.48550/arXiv.2410.05634}.
#'
#' Chang, J., He, J., Yang, L., & Yao, Q. (2023). Modelling matrix time series via a tensor CP-decomposition.
#' \emph{Journal of the Royal Statistical Society Series B: Statistical Methodology}, \strong{85}, 127--148.
#' \doi{doi:10.1093/jrsssb/qkac011}.
#'
#'
#' @examples
#' # Example 1.
#' p <- 10
#' q <- 10
#' n <- 400
#' d = d1 = d2 <- 3
#' ## DGP.CP() generates simulated data for the example in Chang et al. (2024).
#' data <- DGP.CP(n, p, q, d, d1, d2)
#' Y <- data$Y
#'
#' ## d is unknown
#' res1 <- CP_MTS(Y, method = "CP.Direct")
#' res2 <- CP_MTS(Y, method = "CP.Refined")
#' res3 <- CP_MTS(Y, method = "CP.Unified")
#'
#' ## d is known
#' res4 <- CP_MTS(Y, Rank = list(d = 3), method = "CP.Direct")
#' res5 <- CP_MTS(Y, Rank = list(d = 3), method = "CP.Refined")
#'
#'
#' # Example 2.
#' p <- 10
#' q <- 10
#' n <- 400
#' d1 = d2 <- 2
#' d <-3
#' data <- DGP.CP(n, p, q, d, d1, d2)
#' Y1 <- data$Y
#'
#' ## d, d1 and d2 are unknown
#' res6 <- CP_MTS(Y1, method = "CP.Unified")
#' ## d, d1 and d2 are known
#' res7 <- CP_MTS(Y1, Rank = list(d = 3, d1 = 2, d2 = 2), method = "CP.Unified")
#'
#' @export
#' @useDynLib HDTSA
#' @importFrom stats arima.sim rnorm runif
CP_MTS = function(Y, xi = NULL, Rank = NULL, lag.k = 20, lag.ktilde = 10,
method = c("CP.Direct","CP.Refined","CP.Unified"),
thresh1 = FALSE, thresh2 = FALSE, thresh3 = FALSE,
delta1 = 2 * sqrt(log(dim(Y)[2] * dim(Y)[3]) / dim(Y)[1]),
delta2 = delta1, delta3 = delta1){
n <- dim(Y)[1]; p <- dim(Y)[2]; q <- dim(Y)[3];
if(is.null(xi)){
xi <- est.xi(Y)$xi
}
method <- match.arg(method)
if(method == "CP.Direct"){
S_yxi_1 <- Autocov_xi_Y(Y, xi, k = 1, thresh = thresh1, delta = delta1)
S_yxi_2 <- Autocov_xi_Y(Y, xi, k = 2, thresh = thresh1, delta = delta1)
if(p > q){
##(1) estimation of d
K1 <- t(S_yxi_1) %*% S_yxi_1
eg1 <- eigen(K1)
w <- eg1$values
ww <- w[-1] / w[-length(w)]
d <- which(ww == min(ww[1:floor(0.75 * q)]))
if(!is.null(Rank)){
if(!is.null(Rank$d)){
d <- Rank$d
}
else{stop("List Rank without d, use Rank=list(d=?)")}
}
if (d > 1){
K1 <- eg1$vectors[, 1:d]%*%diag(eg1$values[1:d])%*%t(eg1$vectors[, 1:d]);
}else{
K1 <- eg1$vectors[, 1]%*%diag(eg1$values[1], 1)%*%t(eg1$vectors[, 1]);
}
K2 <- t(S_yxi_1) %*% S_yxi_2;
##(2) estimation of A and B
Geg <- geigen::geigen(K2, K1);
evalues <- Geg$values[which(Mod(Geg$values) <= 10^5 & Geg$values != 0)]
Bl <- Geg$vectors[, which(Geg$values %in% evalues), drop = FALSE]
A <- apply(S_yxi_1 %*% Bl, 2, l2s)
Al <- t(MASS::ginv(A))
B <- apply(t(S_yxi_1) %*% Al, 2, l2s)
}else{
##(1) estimation of d
K1 <- S_yxi_1 %*% t(S_yxi_1)
eg1 <- eigen(K1)
w <- eg1$values
ww <- w[-1] / w[-length(w)]
d <- which(ww == min(ww[1:floor(0.75 * p)]))
if(!is.null(Rank)){
if(!is.null(Rank$d)){
d <- Rank$d
}
else{stop("List Rank without d, use Rank=list(d=?)")}
}
if (d > 1){
K1 <- eg1$vectors[, 1:d] %*% diag(eg1$values[1:d]) %*% t(eg1$vectors[, 1:d]);
}else{
K1 <- eg1$vectors[, 1] %*% diag(eg1$values[1], 1) %*% t(eg1$vectors[, 1]);
}
K2 <- S_yxi_1 %*% t(S_yxi_2);
##(2) estimation of A and B
Geg <- geigen::geigen(K2, K1);
evalues <- Geg$values[which(Mod(Geg$values) <= 10^5 & Geg$values!=0)]
Al <- Geg$vectors[, which(Geg$values %in% evalues), drop = FALSE]
B <- apply(t(S_yxi_1) %*% Al, 2, l2s)
Bl <- t(MASS::ginv(B))
A <- apply(S_yxi_1 %*% Bl, 2, l2s)
}
##(3) estimation of Xt
H <- matrix(NA, p * q, d)
for (ii in 1:d) {
H[, ii] <- B[, ii] %x% A[, ii]
}
f <- Vec.tensor(Y) %*% H %*% MASS::ginv(t(H) %*% H)
if(is.complex(A) == T || is.complex(B) == T ){
A <- Complex2Real(A)
B <- Complex2Real(B)
f <- Complex2Real(f)
}
# METHOD <- c("Estimation of matrix CP-factor model",paste("Method:", method))
con <- structure(list(A = A,B = B,f = f,Rank = list(d = d), method = method),
class = "mtscp")
return(con)
}
if(method == "CP.Refined"){
##(1) estimation of P,Q and d
M1 = M2 <- 0
dmax <- round(min(p, q) * 0.75)
for (kk in 1:lag.k){
S_yxi_k <- Autocov_xi_Y(Y, xi, k = kk, thresh = thresh1, delta = delta1)
M1 <- M1 + S_yxi_k %*% t(S_yxi_k)
M2 <- M2 + t(S_yxi_k) %*% S_yxi_k
}
ev_M1 <- eigen(M1)
ev_M2 <- eigen(M2)
d1 <- which.max(ev_M1$values[1:dmax] / ev_M1$values[2:(dmax + 1)])
d2 <- which.max(ev_M2$values[1:dmax] / ev_M2$values[2:(dmax + 1)])
d <- ifelse(p > q, d1, d2)
if(!is.null(Rank)){
if(!is.null(Rank$d)){
d <- Rank$d
}
else{stop("List Rank without d, use Rank=list(d=?)")}
}
P <- ev_M1$vectors[, 1:d, drop = FALSE]
Q <- ev_M2$vectors[, 1:d, drop = FALSE]
if(d == 1){
A <- as.matrix(P)
B <- as.matrix(Q)
f <- vector()
for (tt in 1:n) {
f[tt] <- t(A) %*% Y[tt, , ] %*% B
}
f <- as.matrix(f)
}else{
##(2) estimation of U and V
Z <- array(NA, dim = c(n, d, d))
for (tt in 1:n) {
Z[tt, , ] <- t(P) %*% Y[tt, , ] %*% Q
}
xi <- est.xi(Z)
if(thresh2){
w_hat <- xi$w_hat
Xi <- diag(1, p) %x% ((Q %x% P) %*% as.matrix(w_hat))
sigma_ycheck_1 <- Sigma_Ycheck(Y, 1)
sigma_ycheck_1 <- thresh_C(sigma_ycheck_1, delta2)
sigma_ycheck_2 <- Sigma_Ycheck(Y, 2)
sigma_ycheck_2 <- thresh_C(sigma_ycheck_2, delta2)
S_Zxi_1 <- t(P) %*% t(Xi) %*% sigma_ycheck_1 %*% Q
S_Zxi_2 <- t(P) %*% t(Xi) %*% sigma_ycheck_2 %*% Q
}
else{
S_Zxi_1 <- Autocov_xi_Y(Z, xi$xi, k = 1)
S_Zxi_2 <- Autocov_xi_Y(Z, xi$xi, k = 2)
}
vl <- eigen(MASS::ginv(t(S_Zxi_1) %*% S_Zxi_1) %*% t(S_Zxi_1) %*% S_Zxi_2)$vectors ##MASS
ul <- eigen(MASS::ginv(S_Zxi_1 %*% t(S_Zxi_1)) %*% S_Zxi_1 %*% t(S_Zxi_2))$vectors
U <- apply(S_Zxi_1 %*% vl, 2, l2s)
V <- apply(t(S_Zxi_1) %*% ul, 2, l2s)
##(3) estimation of A and B
A <- P %*% U
B <- Q %*% V
##(4) estimation of Xt
W <- matrix(NA, d^2, d)
for (ii in 1:d) {
W[, ii] <- V[, ii] %x% U[, ii]
}
f <- Vec.tensor(Z) %*% W %*% solve(t(W) %*% W)
if(is.complex(A) == T || is.complex(B) == T ){
A <- Complex2Real(A)
B <- Complex2Real(B)
f <- Complex2Real(f)
}
}
# METHOD <- c("Estimation of matrix CP-factor model",paste("Method:", method))
con <- structure(list(A = A,B = B,f = f,Rank = list(d = d), method = method),
class = "mtscp")
return(con)
}
if(method == "CP.Unified"){
##(1) estimation of P,Q and d1,d2
if(is.null(Rank)){
PQ_hat_tol <- est.d1d2.PQ(Y, xi, K = lag.k, thresh = thresh1, delta = delta1)
d1 <- PQ_hat_tol$d1_hat
d2 <- PQ_hat_tol$d2_hat
d <- NULL
P <- PQ_hat_tol$P_hat
Q <- PQ_hat_tol$Q_hat
if(d1 == 1 || d2 == 1){d <- d1 * d2}
}else{
if(all(!is.null(Rank$d1), !is.null(Rank$d1), !is.null(Rank$d2))){
d <- Rank$d
d1 <- Rank$d1
d2 <- Rank$d2
}
else{stop("List Rank without d, d1 and d2, use Rank=list(d=?, d1=?, d2=?)")}
PQ_hat_tol <- est.PQ(Y, xi, d1, d2, K = lag.k, thresh = thresh1, delta = delta1)
P <- PQ_hat_tol$P_hat
Q <- PQ_hat_tol$Q_hat
}
##(2) estimation of W* = (v1*u1,v2*u2,...,vd*ud)H = WH
if(d1 == 1 & d2 == 1){
d <- 1
f <- vector()
for (tt in 1:n) {
f[tt] = t(P) %*% Y[tt, , ] %*% Q
}
A <- P
B <- Q
# METHOD <- c("Estimation of matrix CP-factor model",paste("Method:",method))
rank <- list(d = d, d1 = d1, d2 = d2)
con <- structure(list(A = as.matrix(A), B = as.matrix(B),
f = as.matrix(f), Rank = rank, method = method),
class = "mtscp")
return(con)
}else{
if(is.null(d)){
W_hat_tol <- est.d.Wf(Y, P, Q, Ktilde = lag.ktilde, thresh = thresh3, delta = delta3)
d <- W_hat_tol$d_hat
W <- W_hat_tol$W_hat
f <- W_hat_tol$f_hat
}else{
d <- d
W_hat_tol <- est.Wf(Y, P, Q, d, Ktilde = lag.ktilde, thresh = thresh3, delta = delta3)
W <- W_hat_tol$W_hat
f <- W_hat_tol$f_hat
}
##(3) estimation of U and V
if(d1 == 1 || d2 == 1){
Theta <- NULL
if(d1 == 1){
U <- 1;
V <- W;
stop("d1 equal to 1, V cannot be identified uniquely!")
}
if(d2 == 1){
U <- W;
V <- 1;
stop("d2 equal to 1, U cannot be identified uniquely!")
}
if(d1 == 1 & d2 == 1){
U <- 1;
V <- 1;
}
U <- as.matrix(U)
V <- as.matrix(V)
}else{
UV_hat_tol <- est.UV.JAD(W, d1, d2, d)
U <- UV_hat_tol$U
V <- UV_hat_tol$V
Theta <- UV_hat_tol$Theta
}
##(4) estimation of A and B
A <- P %*% U
B <- Q %*% V
# METHOD <- c("Estimation of matrix CP-factor model",paste("Method:",method))
rank <- list(d = d, d1 = d1, d2 = d2)
con <- structure(list(A = as.matrix(A), B = as.matrix(B),
f = as.matrix(f), Rank = rank, method = method),
class = "mtscp")
return(con)
}
}
}
rho2.loss = function(A_hat,A){
max(apply(1-(t(A_hat)%*%A)^2,2,min))
}
l2s = function(x){x/sqrt(sum(x^2))}
fnorm = function(x){sqrt(sum(x^2))}
Complex2Real = function(A){
REA = round(Re(A),8)
IMA = round(Im(A),8)
real.index = which(IMA[1,] == 0)
if(length(real.index) == 0){
complex_real = REA
complex_image = IMA
complex_take = which(duplicated(complex_real[1,]) == T)
real = as.matrix(complex_real[,complex_take])
img = as.matrix(complex_image[,complex_take])
new_A = cbind(real,img)
}else{
real.vector = REA[,real.index]
complex_real = REA[,-real.index]
complex_image = IMA[,-real.index]
complex_take = which(duplicated(complex_real[1,]) == T)
real = as.matrix(complex_real[,complex_take])
img = as.matrix(complex_image[,complex_take])
new_A = cbind(real.vector,real,img)
colnames(new_A) = NULL
}
return(new_A)
}
Vec.tensor = function(Y){
p = dim(Y)[2];q = dim(Y)[3];
if(p == q & q == 1){
Y_tilde = apply(Y,1,FUN = as.vector)
}else{
Y_tilde = t(apply(Y,1,FUN = as.vector))
}
return(Y_tilde)
}
#' @title Generating simulated data for the example in Chang et al. (2024)
#' @description \code{DGP.CP()} function generates simulated data following the
#' data generating process described in Section 7.1 of Chang et al. (2024).
#'
#'
#' @param n Integer. The number of observations of the \eqn{p \times q} matrix
#' time series \eqn{{\bf Y}_t}.
#' @param p Integer. The number of rows of \eqn{{\bf Y}_t}.
#' @param q Integer. The number of columns of \eqn{{\bf Y}_t}.
#' @param d Integer. The number of columns of the factor loading matrices \eqn{\bf A}
#' and \eqn{\bf B}.
#' @param d1 Integer. The rank of the \eqn{p \times d} matrix \eqn{\bf A}.
#' @param d2 Integer. The rank of the \eqn{q \times d} matrix \eqn{\bf B}.
#'
#' @seealso \code{\link{CP_MTS}}.
#' @return A list containing the following
#' components:
#' \item{Y}{An \eqn{n \times p \times q} array.}
#' \item{A}{The \eqn{p \times d} left loading matrix \eqn{\bf A}.}
#' \item{B}{The \eqn{q \times d} right loading matrix \eqn{\bf B}.}
#' \item{X}{An \eqn{n \times d \times d} array.}
#' @references
#' Chang, J., Du, Y., Huang, G., & Yao, Q. (2024). Identification and
#' estimation for matrix time series CP-factor models. \emph{arXiv preprint}.
#' \doi{doi:10.48550/arXiv.2410.05634}.
#'
#' @details We generate
#' \deqn{{\bf{Y}}_t = {\bf A \bf X}_t{\bf B}' + {\boldsymbol{\epsilon}}_t }
#' for any \eqn{t=1, \ldots, n}, where \eqn{{\bf X}_t = {\rm diag}({\bf x}_t)}
#' with \eqn{{\bf x}_t = (x_{t,1},\ldots,x_{t,d})'} being a \eqn{d \times 1} time series,
#' \eqn{ {\boldsymbol{\epsilon}}_t } is a \eqn{p \times q} matrix white noise,
#' and \eqn{{\bf A}} and \eqn{{\bf B}} are, respectively, \eqn{p\times d} and
#' \eqn{q \times d} factor loading matrices. \eqn{\bf A}, \eqn{{\bf X}_t}, and \eqn{\bf B}
#' are generated based on the data generating process described in Section 7.1 of
#' Chang et al. (2024) and satisfy \eqn{{\rm rank}({\bf A})=d_1} and
#' \eqn{{\rm rank}({\bf B})=d_2}, \eqn{1 \le d_1, d_2 \le d}.
#'
#' @examples
#' p <- 10
#' q <- 10
#' n <- 400
#' d = d1 = d2 <- 3
#' data <- DGP.CP(n,p,q,d1,d2,d)
#' Y <- data$Y
#'
#' ## The first observation: Y_1
#' Y[1, , ]
#' @export
DGP.CP = function(n,p,q,d,d1,d2){
par_A = c(-3,3)
par_B = c(-3,3)
par_X = c(0.6,0.95)
par_E = 1
Input = list(n = n,p = p,q = q,d1 = d1,d2 = d2,d = d)
A_inl = matrix(runif(p*d,par_A[1],par_A[2]),p,d)
B_inl = matrix(runif(q*d,par_B[1],par_B[2]),q,d)
svd_A = svd(A_inl)
P = svd_A$u[,1:d1]
A = (svd_A$u[,1:d1]) %*% diag(svd_A$d[1:d1],nrow = d1,ncol = d1) %*%t(svd_A$v[,1:d1])
U = t(P)%*%apply(A,2,l2s)
A_s = P%*%U
svd_B = svd(B_inl)
Q = svd_B$u[,1:d2]
B = (svd_B$u[,1:d2]) %*% diag(svd_B$d[1:d2],nrow = d2,ncol = d2) %*% (t(svd_B$v[,1:d2]))
V = t(Q)%*%apply(B,2,l2s)
B_s = Q%*%V
W = matrix(NA,d1*d2,d)
for (ii in 1:d) {
W[,ii] = V[,ii]%x%U[,ii]
}
X = array(0,c(n,d,d))
X_m = matrix(NA,n,d)
signal = runif(d,-1,1)
signal[signal>=0] <- 1
signal[signal< 0] <- -1
par_ar = runif(d,par_X[1],par_X[2])
for (ii in 1:d) {
xd = arima.sim(model = list(ar = par_ar[ii]*signal[ii]),n = n)
X_m[,ii] = xd*(apply(A, 2, fnorm)*apply(B, 2, fnorm))[ii]
X[,ii,ii] <- xd*(apply(A, 2, fnorm)*apply(B, 2, fnorm))[ii]
}
S_m = X_m%*%t(W)
W_star = svd(S_m)$v[,1:d]
Y = S = array(NA,dim = c(n,p,q))
for (tt in 1:n) {
S[tt,,] <- A_s%*%X[tt,,]%*%t(B_s)
Y[tt,,] <- S[tt,,] + matrix(rnorm(p*q,0,par_E),p,q)
}
return(list(Y = Y,
A = A_s,
B = B_s,
X = X
))
}
Autocov_xi_Y = function(Y, xi, k, thresh = FALSE, delta = NULL){
n <- dim(Y)[1]
p <- dim(Y)[2]
q <- dim(Y)[3]
# k <- lag.k
Y_mean <- 0
xi_mean <- 0
for (ii in 1:n) {
Y_mean <- Y_mean + Y[ii,,]
xi_mean <- xi_mean + xi[ii]
}
Y_mean <- Y_mean/n
xi_mean <- xi_mean/n
Sigma_Y_xi_k <- 0
for (ii in (k+1):n) {
Sigma_Y_xi_k <- Sigma_Y_xi_k + (Y[ii,,] - Y_mean)*(xi[ii-k] - xi_mean)
}
Sigma_Y_xi_k <- Sigma_Y_xi_k/(n-k)
if(thresh){
Sigma_Y_xi_k <- thresh_C(Sigma_Y_xi_k, delta)
}
return(Sigma_Y_xi_k)
}
est.xi = function(Y, thresh_per = 0.99, d_max = 20){
n = dim(Y)[1];p = dim(Y)[2];q = dim(Y)[3];
xi.mat = Vec.tensor(Y)
if(n > p*q){
eig_xi.mat = eigen(MatMult(t(xi.mat),xi.mat))
cfr = cumsum(eig_xi.mat$values)/sum(eig_xi.mat$values)
d_hat = min(which(cfr > thresh_per))
d_fin = min(d_max,d_hat)
w_hat = eig_xi.mat$vectors[,1:d_fin, drop=FALSE]
if(d_fin == 1){
sign_value = adjust_sign(w_hat[, 1])
w_hat = w_hat * sign_value
}else{
column_signs = apply(w_hat, 2, adjust_sign)
w_hat = w_hat %*% diag(column_signs)
}
xi.f = xi.mat%*%w_hat
xi = rowMeans(xi.f)
w_hat = rowMeans(w_hat)
}else{
eig_xi.mat = eigen(MatMult(xi.mat,t(xi.mat)))
cfr = cumsum(eig_xi.mat$values)/sum(eig_xi.mat$values)
d_hat = min(which(cfr > thresh_per))
d_fin = min(d_max,d_hat)
xi.f1 = as.matrix(eig_xi.mat$vectors[,1:d_fin, drop=FALSE])
if(d_fin == 1){
sign_value = adjust_sign(xi.f1[, 1])
xi.f1 = xi.f1 * sign_value
}else{
column_signs = apply(xi.f1, 2, adjust_sign)
xi.f1 = xi.f1 %*% diag(column_signs)
}
weight = sqrt(eig_xi.mat$values[1:d_fin])
xi.f1 = xi.f1%*%diag(weight)
xi = rowMeans(xi.f1)
w_hat = as.matrix(t(t(xi.f1)%*%xi.mat))
w_hat = rowMeans(w_hat)
}
return(list(xi=xi, w_hat = w_hat))
}
est.d1d2.PQ = function(Y,xi,K = 10, thresh = FALSE, delta = NULL){
n = dim(Y)[1];p = dim(Y)[2];q = dim(Y)[3];
d2_list = d1_list =vector()
M1 = M2 = 0
dmax = round(min(p,q)*0.75)
P_list = Q_list = list()
for (kk in 1:K){
S_yxi_k = Autocov_xi_Y(Y,xi, k = kk, thresh = thresh, delta = delta)
M1 = M1 + S_yxi_k%*%t(S_yxi_k)
M2 = M2 + t(S_yxi_k)%*%S_yxi_k
ev_M1 = eigen(M1)
ev_M2 = eigen(M2)
d1_list[kk] = which.max(ev_M1$values[1:dmax]/ev_M1$values[2:(dmax+1)])
d2_list[kk] = which.max(ev_M2$values[1:dmax]/ev_M2$values[2:(dmax+1)])
P_list[[kk]] = ev_M1$vectors[,1:(d1_list[kk]), drop = FALSE]
Q_list[[kk]] = ev_M2$vectors[,1:(d2_list[kk]), drop = FALSE]
}
d1_list[1] = 0
d2_list[1] = 0
d1_hat = d1_list[K]
d2_hat = d2_list[K]
P_hat = P_list[[K]]
Q_hat = Q_list[[K]]
return(list(d1_hat = d1_hat,
d2_hat = d2_hat,
P_hat = P_hat,
Q_hat = Q_hat,
d1_list = d1_list,
d2_list = d2_list,
P_list = P_list,
Q_list = Q_list))
}
est.PQ = function(Y,xi,d1,d2,K = 20, thresh = FALSE, delta = NULL){
n = dim(Y)[1];p = dim(Y)[2];q = dim(Y)[3];
M1 = M2 = 0
dmax = round(min(p,q)*0.75)
P_list = Q_list = list()
for (kk in 1:K){
S_yxi_k = Autocov_xi_Y(Y,xi, k = kk, thresh = thresh, delta = delta)
M1 = M1 + S_yxi_k%*%t(S_yxi_k)
M2 = M2 + t(S_yxi_k)%*%S_yxi_k
ev_M1 = eigen(M1)
ev_M2 = eigen(M2)
P_list[[kk]] = ev_M1$vectors[ ,1:(d1), drop = FALSE]
Q_list[[kk]] = ev_M2$vectors[ ,1:(d2), drop = FALSE]
}
P_hat = P_list[[K]]
Q_hat = Q_list[[K]]
return(list(P_hat = P_hat,
Q_hat = Q_hat,
P_list = P_list,
Q_list = Q_list))
}
est.d.Wf = function(Y,P,Q, Ktilde = 10, thresh = FALSE, delta = NULL){
n = dim(Y)[1];p = dim(Y)[2];q = dim(Y)[3];
d1 = NCOL(P);d2 = NCOL(Q);
Z = array(NA,dim = c(n,d1,d2))
for (tt in 1:n) {
Z[tt,,] = t(P)%*%Y[tt,,]%*%Q
}
Z_tilde = Vec.tensor(Z)
M = 0
W_list = f_list = list()
d_list = vector()
dmax = d1*d2
dstar = max(d1,d2)
for (kk in 1:Ktilde) {
if(thresh){
Y_2d <- Vec.tensor(Y)
S_ytilde_k <- sigmak(t(Y_2d), as.matrix(colMeans(Y_2d)), n = n, k = kk)
S_ytilde_k <- thresh_C(S_ytilde_k, delta)
S_ztilde_k <- MatMult(MatMult(t(Q) %x% t(P), S_ytilde_k), Q %x% P)
}
else{
S_ztilde_k = sigmak(t(Z_tilde), as.matrix(colMeans(Z_tilde)),n = n, k= kk)
}
M = M + S_ztilde_k%*%t(S_ztilde_k)
ev_M = eigen(M)
evalues = ev_M$values
d_list[kk] = max(which.max(evalues[1:(dmax-1)]/evalues[2:(dmax)]),dstar)
W_list[[kk]] = ev_M$vectors[,1:(d_list[kk]), drop = FALSE]
f_list[[kk]] = Z_tilde%*%(W_list[[kk]])
}
d_list[1] = 0
d_hat = d_list[Ktilde]
W_hat = W_list[[Ktilde]]
f_hat = f_list[[Ktilde]]
return(list(d_hat = d_hat,
W_hat = W_hat,
f_hat = f_hat,
d_list = d_list,
W_list = W_list,
f_list = f_list))
}
est.d.Wf.nPQ = function(Z, Ktilde = 10){
n = dim(Z)[1];d1 = dim(Z)[2];d2 = dim(Z)[3];
Z_tilde = Vec.tensor(Z)
M = 0
W_list = f_list = list()
d_list = vector()
dmax = d1*d2
dstar = max(d1,d2)
for (kk in 1:Ktilde){
S_ztilde_k = sigmak(t(Z_tilde),as.matrix(colMeans(Z_tilde)),n = n, k= kk)
M = M + S_ztilde_k%*%t(S_ztilde_k)
ev_M = eigen(M)
evalues = ev_M$values
d_list[kk] = max(which.max(evalues[1:(dmax-1)]/evalues[2:(dmax)]),dstar)
W_list[[kk]] = ev_M$vectors[,1:d_hat, drop = FALSE]
f_list[[kk]] = Z_tilde%*%(W_list[[kk]])
}
d_list[1] = 0
d_hat = d_list[Ktilde]
W_hat = W_list[[Ktilde]]
f_hat = f_list[[Ktilde]]
return(list(d_hat = d_hat,
W_hat = W_hat,
f_hat = f_hat,
d_list = d_list,
W_list = W_list,
f_list = f_list))
}
est.Wf = function(Y,P,Q,d,Ktilde = 10, thresh = FALSE, delta = NULL){
n = dim(Y)[1];p = dim(Y)[2];q = dim(Y)[3];
d1 = NCOL(P);d2 = NCOL(Q);
Z = array(NA,dim = c(n,d1,d2))
for (tt in 1:n) {
Z[tt,,] = t(P)%*%Y[tt,,]%*%Q
}
Z_tilde = matrix(NA,n,d1*d2)
for (tt in 1:n) {
Z_tilde[tt,] = as.vector(Z[tt,,])
}
M = 0
W_list = f_list = list()
for (kk in 1:Ktilde){
if(thresh){
Y_2d <- Vec.tensor(Y)
S_ytilde_k <- sigmak(t(Y_2d), as.matrix(colMeans(Y_2d)), n = n, k = kk)
S_ytilde_k <- thresh_C(S_ytilde_k, delta)
S_ztilde_k <- MatMult(MatMult(t(Q) %x% t(P), S_ytilde_k), Q %x% P)
}
else{S_ztilde_k = sigmak(t(Z_tilde),as.matrix(colMeans(Z_tilde)),n = n, k= kk)}
M = M + S_ztilde_k%*%t(S_ztilde_k)
ev_M = eigen(M)
W_list[[kk]] = ev_M$vectors[,1:d, drop = FALSE]
f_list[[kk]] = Z_tilde%*%(W_list[[kk]])
}
W_hat = W_list[[Ktilde]]
f_hat = f_list[[Ktilde]]
return(list(W_hat = W_hat,
f_hat = f_hat,
W_list = W_list,
f_list = f_list))
}
est.UV.JAD = function(W,d1,d2,d){
W_tilde_tol = array(NA,dim= c(d,d1,d2))
for (jj in 1:d){
W_tilde_i = matrix(NA,d1,d2)
for (pp in 1:d2){
for (mm in 1:d1) {
W_tilde_i[mm,pp] <- W[mm + (pp - 1)*d1,jj]
}
}
W_tilde_tol[jj,,] = W_tilde_i
}
P_tol = vector()
for (ss in 1:d) {
for(rr in ss:d){
if(ss == rr){
P_rs = minor_P(W_tilde_tol[rr,,],W_tilde_tol[ss,,],d1,d2)
}else{
P_rs = minor_P(W_tilde_tol[rr,,],W_tilde_tol[ss,,],d1,d2)
}
P_tol = cbind(P_tol,P_rs)
}
}
M_tol = svd(P_tol)$v
dt = NCOL(M_tol)
M = M_tol[,(dt-d+1):dt]
M_tensor = array(NA,dim = c(d,d,d))
eigen_gap = vector()
for (ii in 1:d) {
M_tensor[,,ii] = Vech2Mat_new(M[,ii], d)
eigen_gap[ii] = min(abs(eigen(M_tensor[,,ii])$values))
}
##construct H_star
Ms = M_tensor[,,which.max(eigen_gap)]
HH0 = vector()
HH1 = vector()
HH2 = vector()
for (ii in 1:d) {
HH0 = cbind(HH0,c(M_tensor[,,ii]))
HH1 = cbind(HH1,c(solve(Ms)%*%M_tensor[,,ii]))
HH2 = cbind(HH2,c(M_tensor[,,ii]%*%solve(Ms)))
}
PP = (t(HH0)%*%HH2)%*%solve(t(HH1)%*%HH2 + t(HH2)%*%HH1)%*%(t(HH2)%*%HH0)
EVD = eigen(PP)
if( min(EVD$values) < 0){
R_NOJD = EVD$vectors
}else{
R_NOJD = sqrt(2)/2*(EVD$vectors)%*%diag((EVD$values)^{-1/2})%*%t(EVD$vectors)
}
M_1 = M%*%R_NOJD
M_tensor_1 = array(NA,dim = c(d,d,d))
for (ii in 1:d) {
M_tensor_1[,,ii] = Vech2Mat_new(M_1[,ii],d)
}
H = jointDiag::ffdiag(M_tensor_1)$B ## jointDiag::ffdiag
Theta = apply(MASS::ginv(H), 2, l2s)
Wt = W%*%Theta
U = matrix(NA,d1,d)
V = matrix(NA,d2,d)
for (jj in 1:d){
Wt_tilde_i = matrix(NA,d1,d2)
for (pp in 1:d2){
for (mm in 1:d1) {
Wt_tilde_i[mm,pp] <- Wt[mm + (pp - 1)*d1,jj]
}
}
svdi = svd(Wt_tilde_i)
U[,jj] = svdi$u[,1]
V[,jj] = svdi$v[,1]
}
return(list(U = U,V = V,Theta = Theta))
}
est.UV.EVD = function(W,d1,d2,d){
W_tilde_tol = array(NA,dim= c(d,d1,d2))
for (jj in 1:d){
W_tilde_i = matrix(NA,d1,d2)
for (pp in 1:d2){
for (mm in 1:d1) {
W_tilde_i[mm,pp] <- W[mm + (pp - 1)*d1,jj]
}
}
W_tilde_tol[jj,,] = W_tilde_i
}
P_tol = vector()
for (ss in 1:d) {
for(rr in ss:d){
if(ss == rr){
P_rs = minor_P(W_tilde_tol[rr,,],W_tilde_tol[ss,,],d1,d2)
}else{
P_rs = minor_P(W_tilde_tol[rr,,],W_tilde_tol[ss,,],d1,d2)
}
P_tol = cbind(P_tol,P_rs)
}
}
Theta = 1 + 1i
M_tol = svd(P_tol)$v
dt = NCOL(M_tol)
M_org = M_tol[,(dt-d+1):dt]
M = M_org
M_tensor = array(NA,dim = c(d,d,d))
for (ii in 1:d) {
M_tensor[,,ii] = Vech2Mat_new(M[,ii],d)
}
L0 = L1 = 0
for (tt in 1:(d-1)) {
L0 = L0 + M_tensor[,,tt]
L1 = L1 + M_tensor[,,tt + 1]
}
L0 = L0/(d-1)
L1 = L1/(d-1)
theta.l = eigen(solve(L1)%*%L0)$vectors
Theta = apply(L0%*%theta.l,2,l2s)
if(is.complex(Theta)){
Theta = Complex2Real(Theta)
}
Wt = W%*%Theta
U = matrix(NA,d1,d)
V = matrix(NA,d2,d)
for (jj in 1:d){
Wt_tilde_i = matrix(NA,d1,d2)
for (pp in 1:d2){
for (mm in 1:d1) {
Wt_tilde_i[mm,pp] <- Wt[mm + (pp - 1)*d1,jj]
}
}
svdi = svd(Wt_tilde_i)
U[,jj] = svdi$u[,1]
V[,jj] = svdi$v[,1]
}
return(list(U = U,V = V,Theta = Theta))
}
Sigma_Ycheck <- function(Y, k){
n <- dim(Y)[1]
p <- dim(Y)[2]
q <- dim(Y)[3]
sigmaYk <- matrix(0, nrow = p^2 * q, ncol = q)
Y_mean <- apply(Y, c(2, 3), mean)
for (t in (k + 1):n) {
A <- Y[t, , ] - Y_mean # Y_t - Y_bar (p x q)
B <- Y[t - k, , ] - Y_mean # Y_{t-k} - Y_bar (p x q)
# vec(B): 将 B 转换为列向量
B_vec <- as.vector(B)
# Kronecker product
kron_prod <- A %x% B_vec # (p*q) x (p*q)
sigmaYk <- sigmaYk + kron_prod
}
return(sigmaYk/(n-k))
}
adjust_sign <- function(column) {
first_nonzero_idx <- which(column != 0)[1]
if (!is.na(first_nonzero_idx)) {
return(sign(column[first_nonzero_idx]))
} else {
return(1)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.