# LFA 34 Assessment Script
# ______
# `>___;'______ /3
# ---~<. ))))))) 3
# _____ `,-----%%%%% \3
# `>___;- |}}}
#
require(bio.lobster)
require(devtools)
require(lubridate)
require(bio.utilities)
require(SpatialHub)
p = bio.lobster::load.environment()
la()
assessment.year = 2020 ########### check the year ############### !!!!!!!!!!!
p$syr = 1989
p$yrs = p$syr:assessment.year
# define place for figures to go
figdir = file.path(project.datadirectory("bio.lobster"),"figures","LFA34Update")
p$lfas = "34" # specify lfa
p$subareas = c("34") # specify subareas for data summary
CPUE.data<-CPUEModelData(p,redo=T)
# Map ################
# x11(width=5, height=5)
# LobsterMap('34')
# text(x=c(-65.2,-65.7,-67.4),y=c(43.4,44.9,43.1),labels=c(33,35,41),col=rgb(0,0,0,0.8),cex=1.5)
# savePlot(file.path(figdir,'LFA34map.png'),type='png')
# CPUE ###############
logs=lobster.db("process.logs")
TempModelling = TempModel( annual.by.area=F)
CPUE.data<-CPUEModelData(p,redo=T,TempModelling)
## Commercial CPUE MOdels
mf1 = formula(logWEIGHT ~ fYEAR + DOS + TEMP + DOS * TEMP)
# CPUE.data<- CPUEModelData(p,redo=F)
t=mean(subset(CPUE.data,DOS==1)$TEMP)
mdata = subset(CPUE.data,SYEAR%in%p$yrs & LFA==34)
CPUEModelResults = CPUEmodel(mf1,mdata,t=t,d=1,lfa=34)
crd = CPUEModelResults$pData[,c("YEAR","mu")]
cpue1= CPUEModelPlot(CPUEModelResults,TempModelling,
mdata=mdata,combined=T, lfa = p$lfas,xlim=c(1989,2020.4),ylim=c(0,10.5),
graphic='R',path=figdir,lab=1,wd=11,ht=8)
# plot
x11(width=8,height=5)
CatchRatePlot(data = crd, lfa = 34, fd=figdir)
cpueData=read.csv(file.path(figdir,"CatchRateRefs34.csv"))
#2020 going with raw CPUES
gg = aggregate(cbind(WEIGHT_KG, NUM_OF_TRAPS)~LFA+SYEAR, data=subset(logs,LFA==34),FUN=sum)
gg$CPUE = gg$WEIGHT_KG/gg$NUM_OF_TRAPS
gM = rmed(gg$SYEAR, gg$CPUE)
with(gg,plot(SYEAR,CPUE,xlab='Year',ylab='CPUE', pch=c(rep(16,times=(nrow(gg)-1)),17)))
lines(gM$yr, gM$x, lwd=2, col='salmon')
graphics.off()
cpueData=gg
savePlot(file.path(figdir,'CPUELFA342020.png'))
# Landings and Effort ############
land = lobster.db('seasonal.landings')
land$YEAR = as.numeric(substr(land$SYEAR,6,9))
land$LANDINGS = land$LFA34
cpueData$YEAR=cpueData$SYEAR
cpueData$mu=cpueData$CPUE
fishData = merge(cpueData,land[,c("YEAR","LANDINGS")])
fishData$EFFORT2 = fishData$LANDINGS * 1000 / fishData$mu
# plot
x11(width=8,height=5)
FisheryPlot(fishData[,c("YEAR","LANDINGS","EFFORT2")],lfa = 34,fd=figdir, preliminary=nrow(fishData), units='kt')
# Contextual Indicators #############
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.