# LFA 34 Assessment Script
# ______
# `>___;'______ /3
# ---~<. ))))))) 3
# _____ `,-----%%%%% \3
# `>___;- |}}}
#
p = bio.lobster::load.environment()
la()
assessment.year = 2020 ########### check the year ############### !!!!!!!!!!!
p$syr = 1989
p$yrs = p$syr:assessment.year
# define place for figures to go
#figdir = file.path(project.datadirectory("bio.lobster"),"figures","Assessment","LFA3538")
figdir = file.path("LFA35_Update")
p$lfas = c("35") # specify lfa
p$subareas = c("35") # specify subareas for data summary
# update data through RODBC
lobster.db('temperature.data.redo')
lobster.db('fsrs.redo')
lobster.db('logs.redo')
logs=lobster.db('process.logs.redo')
#CPUE.data<-CPUEModelData(p,redo=T)
# Map ################
x11(width=5, height=5)
LobsterMap(ylim=c(43.3,46), xlim=c(-67.8,-63.2))
savePlot(file.path(figdir,'LFA3538map.png'),type='png')
# CPUE ###############
require('bio.utilities')
logs=lobster.db("process.logs")
TempModelling = TempModel( annual.by.area=F, redo.data=F)
CPUE.data<-CPUEModelData(p,redo=F,TempModelling)
## Commercial CPUE MOdels
mf1 = formula(logWEIGHT ~ fYEAR + DOS + TEMP + DOS * TEMP)
CPUE.data<- CPUEModelData(p,redo=F)
t=with(subset(CPUE.data,DOS==1),tapply(TEMP,LFA,mean))
pData=list()
CPUEModelResults = list()
for(i in 1:length( p$lfas)){
mdata = subset(CPUE.data,LFA==p$lfas[i]&SYEAR%in%p$yrs)
if(nrow(mdata)>10){
CPUEModelResults[[i]] = CPUEmodel(mf1,mdata,t=t[i],d=1)
pData[[i]]=CPUEModelResults[[i]]$pData
pData[[i]]$LFA=p$lfas[i]
}
}
names(CPUEModelResults) = p$lfas
CPUEindex=do.call("rbind",pData)
# plot
x11(width=8,height=5)
#35
l35 = subset(CPUEindex,LFA==35,c("YEAR","mu"))
k = median(l35$mu[which(l35$YEAR %in% 2011:2018)])
usr = .4*k
lrp = .2*k
plot(l35$YEAR,l35$mu,xlab='Year',ylab='CPUE (kg/TH)',type='p',pch=16,ylim=c(0,6))
running.median = with(rmed(l35$YEAR,l35$mu),data.frame(YEAR=yr,running.median=x))
l35=merge(l35,running.median,all=T)
lines(l35$YEAR,l35$running.median,col='blue',lty=1,lwd=3)
abline(h=usr,col='green',lwd=2,lty=2)
abline(h=lrp,col='red',lwd=2,lty=3)
# FSRS #############
FSRSvesday<-FSRSModelData()
mdata = subset(FSRSvesday,LFA==35)
FSRSModelResultsLegal=FSRSmodel(mdata,lfa=35, response="LEGALS",interaction=F,type="bayesian",iter=5000,redo=T,ptraps=1000)
FSRSModelShortsRecruit=FSRSmodel(mdata,lfa=35, response="SHORTS",interaction=F,type="bayesian",iter=5000,redo=T,ptraps=1000)
FSRSModelResultsRecruit=FSRSmodel(mdata,lfa=35, response="RECRUITS",interaction=F,type="bayesian",iter=5000,redo=T,ptraps=1000)
FSRSModelResultsLegal=FSRSmodel(mdata,lfa=35, response="LEGALS",interaction=F,type="bayesian",iter=5000,redo=F,ptraps=1000)
legals = FSRSModelResultsLegal$pData
legals$Area = 35
FSRSModelResultsRecruit=FSRSmodel(mdata,lfa=35, response="RECRUITS",interaction=F,type="bayesian",iter=5000,redo=F,ptraps=1000)
recruit = FSRSModelResultsRecruit$pData
recruit$Area = 35
FSRSModelShortsRecruit=FSRSmodel(mdata,lfa=35, response="SHORTS",interaction=F,type="bayesian",iter=5000,redo=F,ptraps=1000)
shorts = FSRSModelShortsRecruit$pData
shorts$Area = 35
save(list=c("shorts","legals","recruit"),file=figdir)
# plot
x11(width=8,height=7)
FSRSCatchRatePlot(recruits = recruit[,c("YEAR","median","lb","ub")],legals=legals[,c("YEAR","median","lb","ub")],lfa = 35,fd=figdir,title='')
# Landings and Effort ############
land = lobster.db('seasonal.landings')
land$YR = as.numeric(substr(land$SYEAR,6,9))
for(i in 1:length(p$lfas)){
d1 = data.frame(YEAR = land$YR, LANDINGS = land[,paste0("LFA",p$lfas[i])])
d2 = subset(CPUEindex,LFA==p$lfas[i],c("LFA","YEAR","mu"))
names(d2)[3]="CPUE"
d2 = merge(data.frame(LFA=d2$LFA[1],YEAR=min(d2$YEAR):max(d2$YEAR)),d2,all.x=T)
fishData = merge(d2,d1)
fishData$EFFORT2 = fishData$LANDINGS * 1000 / fishData$CPUE
# plot
x11(width=8,height=5)
FisheryPlot(fishData[,c("YEAR","LANDINGS","EFFORT2")],lfa = p$lfas[i],fd=figdir,preliminary=nrow(fishData))
}
# Contextual Indicators #############
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.