Description Details Author(s) References Examples
Iterated race is an extension of the Iterated F-race method for the automatic configuration of optimization algorithms, that is, (offline) tuning their parameters by finding the most appropriate settings given a set of instances of an optimization problem.
Package: | irace |
Type: | Package |
Version: | 2.3 |
Date: | 2018-06-01 |
License: | GPL (>= 2) |
LazyLoad: | yes |
Maintainer: Manuel López-Ibáñez and Leslie Pérez Cáceres irace@iridia.ulb.ac.be
Author: Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Thomas Stützle, Mauro Birattari, Eric Yuan and Prasanna Balaprakash
Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Thomas Stützle, and Mauro Birattari. The irace package: Iterated Racing for Automatic Algorithm Configuration. Operations Research Perspectives, 2016. doi: 10.1016/j.orp.2016.09.002
Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Thomas Stützle, and Mauro Birattari. The irace package, Iterated Race for Automatic Algorithm Configuration. Technical Report TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium, 2011.
Manuel López-Ibáñez and Thomas Stützle. The Automatic Design of Multi-Objective Ant Colony Optimization Algorithms. IEEE Transactions on Evolutionary Computation, 2012.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 | #######################################################################
# This example illustrates how to tune the parameters of the simulated
# annealing algorithm (SANN) provided by the optim() function in the
# R base package. The goal in this example is to optimize instances of
# the following family:
# f(x) = lambda * f_rastrigin(x) + (1 - lambda) * f_rosenbrock(x)
# where lambda follows a normal distribution whose mean is 0.9 and
# standard deviation is 0.02. f_rastrigin and f_rosenbrock are the
# well-known Rastrigin and Rosenbrock benchmark functions (taken from
# the cmaes package). In this scenario, different instances are given
# by different values of lambda.
#######################################################################
## First we provide an implementation of the functions to be optimized:
f_rosenbrock <- function (x) {
d <- length(x)
z <- x + 1
hz <- z[1:(d - 1)]
tz <- z[2:d]
s <- sum(100 * (hz^2 - tz)^2 + (hz - 1)^2)
return(s)
}
f_rastrigin <- function (x) {
sum(x * x - 10 * cos(2 * pi * x) + 10)
}
## We generate 200 instances (in this case, weights):
weights <- rnorm(200, mean = 0.9, sd = 0.02)
## On this set of instances, we are interested in optimizing two
## parameters of the SANN algorithm: tmax and temp. We setup the
## parameter space as follows:
parameters.table <- '
tmax "" i (1, 5000)
temp "" r (0, 100)
'
## We use the irace function readParameters to read this table:
parameters <- readParameters(text = parameters.table)
## Next, we define the function that will evaluate each candidate
## configuration on a single instance. For simplicity, we restrict to
## three-dimensional functions and we set the maximum number of
## iterations of SANN to 5000.
target.runner <- function(experiment, scenario)
{
instance <- experiment$instance
configuration <- experiment$configuration
D <- 3
par <- runif(D, min=-1, max=1)
fn <- function(x) {
weight <- instance
return(weight * f_rastrigin(x) + (1 - weight) * f_rosenbrock(x))
}
res <- optim(par,fn, method="SANN",
control=list(maxit=5000
, tmax = as.numeric(configuration[["tmax"]])
, temp = as.numeric(configuration[["temp"]])
))
## New output interface in irace 2.0. This list may also contain:
## - 'time' if irace is called with 'maxTime'
## - 'error' is a string used to report an error
## - 'outputRaw' is a string used to report the raw output of calls to
## an external program or function.
## - 'call' is a string used to report how target.runner called the
## external program or function.
return(list(cost = res$value))
}
## We define a configuration scenario by setting targetRunner to the
## function define above, instances to the first 100 random weights, and
## a maximum budget of 1000 calls to targetRunner.
scenario <- list(targetRunner = target.runner,
instances = weights[1:100],
maxExperiments = 1000,
logFile = "")
## We check that the scenario is valid. This will also try to execute
## target.runner.
checkIraceScenario(scenario, parameters = parameters)
## Not run:
## We are now ready to launch irace. We do it by means of the irace
## function. The function will print information about its
## progress. This may require a few minutes, so it is not run by default.
tuned.confs <- irace(scenario = scenario, parameters = parameters)
## We can print the best configurations found by irace as follows:
configurations.print(result)
## We can evaluate the quality of the best configuration found by
## irace versus the default configuration of the SANN algorithm on
## the other 100 instances previously generated.
## To do so, first we apply the default configuration of the SANN
## algorithm to these instances:
test <- function(configuration)
{
res <- lapply(weights[101:200],
function(x) target.runner(
experiment = list(instance = x,
configuration = configuration),
scenario = scenario))
return (sapply(res, getElement, name = "cost"))
}
default <- test(data.frame(tmax=10, temp=10))
## We extract and apply the winning configuration found by irace
## to these instances:
tuned <- test (removeConfigurationsMetaData(tuned.confs[1,]))
## Finally, we can compare using a boxplot the quality obtained with the
## default parametrization of SANN and the quality obtained with the
## best configuration found by irace.
boxplot(list(default = default, tuned = tuned))
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.