R/mr.dimensionality.test.R

Defines functions mr.dimensionality.test

Documented in mr.dimensionality.test

#' Multiple-response dimensionality test
#'
#' @description Performs a multiple-response dimensionality test as defined in Mahieu, Schlich, Visalli, and Cardot (2021) using random permutations to estimate the null distribution
#'
#' @param data A data.frame of observations in rows whose first column is a factor (the categories) and subsequent columns are binary numeric or integer, each column being a response option
#' @param nperm Number of permuted datasets to estimate the distribution of the statistic under the null hypothesis. See details
#' @param alpha The alpha risk of the test
#'
#' @return A list with the following elements:
#' \describe{
#'   \item{dim.sig}{The number of significant dimensions}
#'   \item{statistics}{Observed multiple-response chi-square statistic of each dimension}
#'   \item{p.values}{P-value of the test of each dimension adjusted for closed testing procedure}
#' }
#' @export
#' @details
#' \itemize{
#'   \item \strong{nperm}: The distribution of the statistic under the null hypothesis of no associations between categories and response options is estimated using \emph{nperm} datasets generated thanks to random permutations of the response vectors along observations.
#' }
#' @references Loughin, T. M., & Scherer, P. N. (1998). Testing for Association in Contingency Tables with Multiple Column Responses. Biometrics, 54(2), 630-637.
#' @references Mahieu, B., Schlich, P., Visalli, M., & Cardot, H. (2021). A multiple-response chi-square framework for the analysis of Free-Comment and Check-All-That-Apply data. Food Quality and Preference, 93.
#'
#' @import stats
#' @import utils
#'
#' @examples
#' nb.obs=200
#' nb.response=5
#' nb.category=5
#' vec.category=paste("C",1:nb.category,sep="")
#' right=matrix(rbinom(nb.response*nb.obs,1,0.25),nb.obs,nb.response)
#' category=sample(vec.category,nb.obs,replace = TRUE)
#' dset=cbind.data.frame(category,right)
#' dset$category=as.factor(dset$category)
#'
#'
#' mr.dimensionality.test(dset)
#'
mr.dimensionality.test=function(data,nperm=2000,alpha=0.05){
  classe=class(data)[1]
  if (!classe%in%c("data.frame")){
    stop("data must be a data.frame")
  }
  classe=class(data[,1])
  if(!classe%in%c("factor")){
    stop("First column of data must be a factor")
  }
  for (j in 2:ncol(data)){
    classe=class(data[,j])[1]
    if (!classe%in%c("numeric","integer")){
      stop("Contingency data must be integer or numeric")
    }
  }
  check.bin=unique(unlist(data[,2:ncol(data)]))
  if (length(check.bin)>2){
    warning("contingency data are not composed of only ones and zeros")
  }else{
    check.un=sum(check.bin==c(0,1))
    check.deux=sum(check.bin==c(1,0))
    if (check.un!=2 & check.deux!=2){
      warning("contingency data are not composed of only ones and zeros")
    }
  }
  colnames(data)[1]="category"
  data=data[order(data$category),]
  rownames(data)=as.character(1:nrow(data))
  original=aggregate(.~category,data,sum)
  rownames(original)=original$category
  original$category=NULL
  verif.col=colSums(original)
  if (any(verif.col==0)){
    stop("Some responses have never been selected")
  }
  nplus=table(data$category)
  nplusplus=sum(nplus)
  if (any(nplus==0)){
    stop("Some categories are not represented")
  }
  o=original
  mr=nplus
  N=sum(mr)
  mc=colSums(o)
  fij=mr%o%mc/N
  std=(((o-fij))/sqrt(fij))/(sqrt(N))
  nb.axe=min(nrow(std)-1,ncol(std))
  udv=svd(std)
  vs=udv$d[1:nb.axe]
  eig=vs^2
  chi.obs=eig
  chi.obs=c(sum(chi.obs),(sum(chi.obs)-cumsum(chi.obs))[-length(eig)])*N

  sortie=matrix(0,nperm,length(chi.obs))
  pb=txtProgressBar(min=0,max=nperm,style=3)
  for (perm in 1:nperm){
    virt.data=data
    loto=sample(1:nrow(virt.data),nrow(virt.data),replace = F)
    virt.data[,2:ncol(virt.data)]=virt.data[loto,2:ncol(virt.data)]

    original=aggregate(.~category,virt.data,sum)
    rownames(original)=original$category
    original$category=NULL
    nplus=table(virt.data$category)
    nplusplus=sum(nplus)
    o=original
    mr=nplus
    N=sum(mr)
    mc=colSums(o)
    fij=mr%o%mc/N
    std=(((o-fij))/sqrt(fij))/(sqrt(N))
    nb.axe=min(nrow(std)-1,ncol(std))
    udv=svd(std)
    vs=udv$d[1:nb.axe]
    eig=vs^2

    chi.virt=eig
    chi.virt=c(sum(chi.virt),(sum(chi.virt)-cumsum(chi.virt))[-length(eig)])*N
    sortie[perm,]=chi.virt
    setTxtProgressBar(pb,perm)
  }
  sortie=rbind(sortie,chi.obs)
  calc.pval=function(vec){
    obs=vec[length(vec)]
    virt=vec[-length(vec)]
    pval=(sum(virt>=obs)+1)/(nperm+1)
  }
  back.pval=apply(sortie, 2, calc.pval)
  for (i in 1:length(back.pval)){
    back.pval[i]=max(back.pval[1:i])
  }
  nom=paste("Dim.",1:length(chi.obs))
  names(back.pval)=names(chi.obs)=nom
  dim.sig=back.pval<=alpha
  ou=match(FALSE,dim.sig)
  if(!is.na(ou)){
    dim.sig=ou-1
  }else{
    dim.sig=length(back.pval)
  }
  axe.test=list(dim.sig=dim.sig,statistics=chi.obs,p.values=back.pval)
  back=axe.test
  return(back)
}
MahieuB/MultiResponseR documentation built on June 22, 2024, 8:08 a.m.