#' Multiple-response tests per cell for sensory data
#'
#' @description This function performs for each pair of product and descriptor a multiple-response hypergeometric test as defined in Mahieu, Schlich, Visalli, and Cardot (2021) using random hypergeometric samplings to estimate the null distribution. The difference with \code{\link[MultiResponseR]{mr.sig.cell}} is that random hypergeometric samplings are performed within subjects in \code{\link[MultiResponseR]{sensory.mr.sig.cell}}
#'
#' @param data A data.frame of evaluations in rows whose first two columns are factors (subject and product) and subsequent columns are binary numeric or integer, each column being a descriptor
#' @param nsample Number of randomly sampled datasets to estimate the distribution of the value under the null hypothesis. See details
#' @param nbaxes.sig The number of significant axes retuned by \code{\link[MultiResponseR]{sensory.mr.dimensionality.test}}. By default, all axes are considered significant. See details
#' @param two.sided Logical. Should the tests be two-sided or not?
#'
#' @details
#' \itemize{
#' \item \strong{nsample}: The distribution of the value under the null hypothesis of no associations between products and descriptors is estimated using \emph{nsample} datasets generated thanks to random hypergeometric samplings of the response vectors along products within subjects.
#' \item \strong{nbaxes.sig}: If \emph{nbaxes.sig} is lower than the total number of axes then the tests are performed on the derived contingency table corresponding to significant axes (Mahieu, Schlich, Visalli, & Cardot, 2021) This table is obtained by using the reconstitution formula of MR-CA on the first \emph{nbaxes.sig} axes.
#' }
#'
#' @return A list with the following elements:
#' \describe{
#' \item{original.cont}{Observed number of times each product was described by each descriptor}
#' \item{percent.cont}{For each product, percentage of evaluations where each descriptor was cited for this product}
#' \item{null.cont}{Expected number of times each product was described by each descriptor under the null hypothesis}
#' \item{p.values}{P-values of the tests per cell fdr adjusted by descriptor}
#' \item{derived.cont}{The derived contingency table corresponding to \emph{nbaxes.sig} axes}
#' \item{percent.derived.cont}{For each product, percentage of evaluations where each descriptor was cited for this product in the derived contingency table corresponding to \emph{nbaxes.sig} axes}
#' }
#' @export
#'
#' @import stats
#' @import utils
#'
#' @references Loughin, T. M., & Scherer, P. N. (1998). Testing for Association in Contingency Tables with Multiple Column Responses. Biometrics, 54(2), 630-637.
#' @references Mahieu, B., Schlich, P., Visalli, M., & Cardot, H. (2021). A multiple-response chi-square framework for the analysis of Free-Comment and Check-All-That-Apply data. Food Quality and Preference, 93.
#'
#'
#' @examples
#'data(milkchoc)
#'
#'dim.sig=sensory.mr.dimensionality.test(milkchoc)$dim.sig
#'
#'res=sensory.mr.sig.cell(milkchoc,nbaxes.sig=dim.sig)
#'
#'plot(res)
sensory.mr.sig.cell=function(data,nsample=2000,nbaxes.sig=Inf,two.sided=TRUE){
classe=class(data)[1]
if (!classe%in%c("data.frame")){
stop("data must be a data.frame")
}
for (j in 1:2){
classe=class(data[,j])[1]
if (!classe%in%c("factor")){
stop("The first two columns of data must be factor")
}
}
if(!colnames(data)[1]%in%c("sujet","subject","Sujet","Subject")){
stop("First column name must be sujet, Sujet, subject or Subject")
}
if(!colnames(data)[2]%in%c("produit","product","Produit","Product")){
stop("Second column name must be produit, product, Produit or Product")
}
colnames(data)[1]="sujet"
colnames(data)[2]="produit"
data$sujet=as.factor(as.character(data$sujet))
data$produit=as.factor(as.character(data$produit))
for (j in 3:ncol(data)){
classe=class(data[,j])
if (!classe%in%c("numeric","integer")){
stop("Contingency data must be numeric or integer")
}
}
check.bin=unique(unlist(data[,3:ncol(data)]))
if (length(check.bin)>2){
warning("contingency data are not composed of only ones and zeros")
}else{
check.un=sum(check.bin==c(0,1))
check.deux=sum(check.bin==c(1,0))
if (check.un!=2 & check.deux!=2){
warning("contingency data are not composed of only ones and zeros")
}
}
sorted.name=sort(colnames(data[,-c(1:2)]))
d=data[,sorted.name]
g=data[,c("sujet","produit")]
data=cbind.data.frame(g,d)
data=data[order(data$sujet,data$produit),]
rownames(data)=as.character(1:nrow(data))
org=aggregate(.~produit,data,sum)
org$sujet=NULL
rownames(org)=as.character(org$produit)
org$produit=NULL
verif.col=colSums(org)
if (any(verif.col==0)){
stop("Some descriptors have never been selected")
}
param.etendu=table(data$sujet,data$produit)
if (length(unique(param.etendu))>1){
warning("Data are unbalanced: products have not been evaluated a same number of times by subjects")
}
nplus=colSums(param.etendu)
nom=names(nplus)
nplus=as.numeric(nplus)
names(nplus)=nom
nplusplus=sum(nplus)
if (nbaxes.sig==0){
stop("nbaxes.sig is equal to zero")
}else if (nbaxes.sig==Inf){
nbaxes.sig=min(nrow(org)-1,ncol(org))
}
calc.cont=function(tab){
res=mrCA(tab)
if (nbaxes.sig==1){
d.vs=res$svd$vs[1]
}else{
d.vs=diag(res$svd$vs)
d.vs=d.vs[1:nbaxes.sig,1:nbaxes.sig]
}
theo=res$svd$u[,1:nbaxes.sig,drop=FALSE]%*%d.vs%*%t(res$svd$v[,1:nbaxes.sig,drop=FALSE])
mr=as.numeric(table(tab[,1])/sum(table(tab[,1])))
mc=as.numeric(colSums(tab[,-1])/sum(table(tab[,1])))
e=mr%o%mc
theo.cont=((theo*sqrt(e))+e)*sum(table(tab[,1]))
theo.cont=round(ifelse(theo.cont<0,0,theo.cont))
return(theo.cont)
}
theo.cont=calc.cont(data[,-1])
row.s=matrix(NA,nlevels(data$produit),nlevels(data$sujet))
colnames(row.s)=levels(data$sujet)
for (s in unique(data$sujet)){
ou.s=which(data$sujet==s)
row.s[1:length(ou.s),s]=ou.s
}
mySample=function(vec){
vec.retour=na.omit(vec)
if (length(vec.retour)>1){
vec.retour=sample(vec.retour,length(vec.retour),replace = TRUE)
}else{
vec.retour=vec.retour[1]
}
return(vec.retour)
}
sortie=array(0,c(nrow(theo.cont),ncol(theo.cont),nsample))
pb=txtProgressBar(1,nsample,style = 3)
for (ssample in 1:nsample){
virt.data=data
tirage=unlist(apply(row.s,2,mySample))
virt.data[,3:ncol(virt.data)]=data[tirage,3:ncol(data)]
verif=colSums(virt.data[,-c(1:2)])
vire = which(verif==0)
if(length(vire)!=0){
nom.vire=names(vire)
vire=vire+2
virt.data=virt.data[,-vire]
}
theo.cont.virt=calc.cont(virt.data[,-1])
if(length(vire)!=0){
theo.zero=matrix(0,nrow = nrow(theo.cont.virt),ncol = length(nom.vire))
rownames(theo.zero)=rownames(theo.cont.virt)
colnames(theo.zero)=nom.vire
theo.cont.virt=cbind(theo.cont.virt,theo.zero)
theo.cont.virt=theo.cont.virt[,sorted.name]
}
sortie[,,ssample]=theo.cont.virt
setTxtProgressBar(pb,ssample)
}
bb=colSums(org)/nplusplus
aa=nplus/nplusplus
med.mat=aa%o%bb*nplusplus
back.pval=as.data.frame(matrix(0,nrow(org),ncol(org),dimnames=dimnames(org)))
for (i in 1:dim(sortie)[1]){
for (j in 1:dim(sortie)[2]){
if(two.sided){
obs=theo.cont[i,j]
virt=sortie[i,j,]
g=sum(virt<=obs)
d=sum(virt>=obs)
pp=((min(g,d)+1)/(nsample+1))*2
if (pp>1){
pp=1
}
back.pval[i,j]=pp
}else{
obs=theo.cont[i,j]
virt=sortie[i,j,]
pp=(sum(virt>=obs)+1)/(nsample+1)
back.pval[i,j]=pp
}
}
}
org=as.data.frame(t(org[,sorted.name]))
percent.cont=as.data.frame(t(as.data.frame(round(t(org)/nplus*100,2))))
back.pval=as.data.frame(t(back.pval[,sorted.name]))
adj.back.pval=as.data.frame(t(apply(back.pval,1,p.adjust,method="fdr")))
back=list(original.cont=org,percent.cont=percent.cont,null.cont=as.data.frame(t(med.mat[,sorted.name])),p.value=round(adj.back.pval,4),derived.cont=as.data.frame(t(theo.cont[,sorted.name])),
percent.derived.cont=as.data.frame(round(t(theo.cont[,sorted.name]/nplus*100),2)))
class(back)=c("sensory.mr.sig.cell","list")
return(back)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.