library("BloodCancerMultiOmics2017") library("Biobase") library("ggplot2") library("gtable") library("grid") library("dplyr") library("gridExtra")
plotDir = ifelse(exists(".standalone"), "", "part01/") if(plotDir!="") if(!file.exists(plotDir)) dir.create(plotDir)
options(stringsAsFactors=FALSE)
Loading the data.
data("drpar", "drugs", "patmeta", "mutCOM")
Creating vectors of patient samples and drugs within the drug screen. Within drugs, we omit the statistics for one drug combination, due to lack of possibility to assign its targets.
# PATIENTS patM = colnames(drpar) # DRUGS drM = rownames(drpar) drM = drM[!drM %in% "D_CHK"] # remove combintation of 2 drugs: D_CHK
General plotting parameters.
bwScale = c("0"="white","1"="black","N.A."="grey90") lfsize = 16 # legend font size
Categorize the drugs.
drugs$target_category = as.character(drugs$target_category) drugs$group = NA drugs$group[which(drugs$approved_042016==1)] = "FDA approved" drugs$group[which(drugs$devel_042016==1)] = "clinical development/\ntool compound"
Show the characteristics.
res = table(drugs[,c("target_category","group")]) knitr::kable(res[order(res[,1], decreasing=TRUE),])
goM = BloodCancerMultiOmics2017:::plotPathways(dat=drugs[drM,])
#FIG# 1C grid.draw(goM[["figure"]][["plot"]])
knitr::knit_hooks$set(crop=NULL)
#FIG# 1C grid.draw(goM[["legend"]][["plot"]])
knitr::knit_hooks$set(crop=knitr:::hook_pdfcrop)
Show number of samples stratified by the diagnosis.
knitr::kable(data.frame(sort(table(patmeta[patM, "Diagnosis"]), decreasing=TRUE)))
goM = BloodCancerMultiOmics2017:::plotPatientStat(pats=patM, gap=c(30,160))
#FIG# 1B grid.draw(goM[["figure"]][["plot"]])
knitr::knit_hooks$set(crop=NULL)
#FIG# 1B grid.draw(goM[["legend"]][["plot"]])
knitr::knit_hooks$set(crop=knitr:::hook_pdfcrop)
Within CLL group, we now show mutations with occurred in at least 4 samples.
# select CLL samples patM = patM[patmeta[patM,"Diagnosis"]=="CLL"] ighv = factor(setNames(patmeta[patM,"IGHV"], nm=patM), levels=c("U","M")) mut1 = c("del17p13", "del11q22.3", "trisomy12", "del13q14_any") mut2 = c("TP53", "ATM", "SF3B1", "NOTCH1", "MYD88") mc = assayData(mutCOM)$binary[patM,] ## SELECTION OF MUTATIONS # # include mutations with at least incidence of 4 mut2plot = names(which(sort(colSums(mc, na.rm=TRUE), decreasing=TRUE)>3)) # remove chromothrypsis mut2plot = mut2plot[-grep("Chromothripsis", mut2plot)] # divide mutations into gene mut and cnv mut2plotSV = mut2plot[grep("[[:lower:]]", mut2plot)] mut2plotSP = mut2plot[grep("[[:upper:]]", mut2plot)] # remove some other things (it is quite manual thing, so be careful) # IF YOU WANT TO REMOVE SOME MORE MUTATIONS JUST ADD THE LINES HERE! mut2plotSV = mut2plotSV[-grep("del13q14_mono", mut2plotSV)] mut2plotSV = mut2plotSV[-grep("del13q14_bi", mut2plotSV)] mut2plotSV = mut2plotSV[-grep("del14q24.3", mut2plotSV)] # rearrange the top ones to match the order in mut1 and mut2 mut2plotSV = c(mut1, mut2plotSV[!mut2plotSV %in% mut1]) mut2plotSP = c(mut2, mut2plotSP[!mut2plotSP %in% mut2]) factors = data.frame(assayData(mutCOM)$binary[patM, c(mut2plotSV, mut2plotSP)], check.names=FALSE) # change del13q14_any to del13q14 colnames(factors)[which(colnames(factors)=="del13q14_any")] = "del13q14" mut2plotSV = gsub("del13q14_any", "del13q14", mut2plotSV) # change it to factors for(i in 1:ncol(factors)) { factors[,i] = factor(factors[,i], levels=c(1,0)) } ord = order(factors[,1], factors[,2], factors[,3], factors[,4], factors[,5], factors[,6], factors[,7], factors[,8], factors[,9], factors[,10], factors[,11], factors[,12], factors[,13], factors[,14], factors[,15], factors[,16], factors[,17], factors[,18], factors[,19], factors[,20], factors[,21], factors[,22], factors[,23], factors[,24], factors[,25], factors[,26], factors[,27], factors[,28], factors[,29], factors[,30], factors[,31], factors[,32]) factorsord = factors[ord,] patM = patM[ord] (c(mut2plotSV, mut2plotSP))
Let's now look deeper and for each mutation. We ask how many samples have (1) or don't have (0) a particular mutation.
plotDF = meltWholeDF(factorsord) plotDF$Mut = ifelse(sapply(plotDF$X, function(x) grep(x, list(mut2plotSV, mut2plotSP)))==1,"SV","SP") plotDF$Status = "N.A." plotDF$Status[plotDF$Measure==1 & plotDF$Mut=="SV"] = "1a" plotDF$Status[plotDF$Measure==1 & plotDF$Mut=="SP"] = "1b" plotDF$Status[plotDF$Measure==0] = "0" plotDF$Status = factor(plotDF$Status, levels=c("1a","1b","0","N.A.")) plotDF$Y = factor(plotDF$Y, levels=patM) plotDF$X = factor(plotDF$X, levels=rev(colnames(factorsord))) mutPL = ggplotGrob( ggplot(data=plotDF, aes(x=Y, y=X, fill=Status)) + geom_tile() + scale_fill_manual( values=c("0"="white","1a"="forestgreen","1b"="navy","N.A."="grey90"), name="Mutation", labels=c("CNV","Gene mutation","WT","NA")) + ylab("") + xlab("") + geom_vline(xintercept=seq(0.5,length(patM)+1,5), colour="grey60") + geom_hline(yintercept=seq(0.5,ncol(factorsord)+1,1), colour="grey60") + scale_y_discrete(expand=c(0,0)) + scale_x_discrete(expand=c(0,0)) + theme(axis.ticks=element_blank(), axis.text.x=element_blank(), axis.text.y=element_text( size=60, face=ifelse(levels(plotDF$X) %in% mut2plotSV, "plain","italic")), axis.text=element_text(margin=unit(0.5,"cm"), colour="black"), legend.key = element_rect(colour = "black"), legend.text=element_text(size=lfsize), legend.title=element_text(size=lfsize))) res = table(plotDF[,c("X","Measure")]) knitr::kable(res[order(res[,2], decreasing=TRUE),])
In the last part, we characterize samples according to metadata categories.
Age
ageDF = data.frame(Factor="Age", PatientID=factor(patM, levels=patM), Value=patmeta[patM,c("Age4Main")]) agePL = ggplotGrob( ggplot(ageDF, aes(x=PatientID, y=Factor, fill=Value)) + geom_tile() + scale_fill_gradient(low = "gold", high = "#3D1F00", na.value="grey92", name="Age", breaks=c(40,60,80)) + theme(axis.ticks=element_blank(), axis.text=element_text(size=60, colour="black", margin=unit(0.5,"cm")), legend.text=element_text(size=lfsize), legend.title=element_text(size=lfsize))) hist(ageDF$Value, col="slategrey", xlab="Age", main="")
Sex
sexDF = data.frame(Factor="Sex", PatientID=factor(patM, levels=patM), Value=patmeta[patM, "Gender"]) sexPL = ggplotGrob( ggplot(sexDF, aes(x=PatientID, y=Factor, fill=Value)) + geom_tile() + scale_fill_manual(values=c("f"="maroon","m"="royalblue4","N.A."="grey90"), name="Sex", labels=c("Female","Male","NA")) + theme(axis.ticks=element_blank(), axis.text=element_text(size=60, colour="black", margin=unit(0.5,"cm")), legend.key = element_rect(colour = "black"), legend.text=element_text(size=lfsize), legend.title=element_text(size=lfsize))) table(sexDF$Value)
Treatment
Number of samples treated (1) or not treated (0) before sampling.
treatDF = data.frame(Factor="Treated", PatientID=factor(patM, levels=patM), Value=ifelse(patmeta[patM, "IC50beforeTreatment"], 0, 1)) treatDF$Value[is.na(treatDF$Value)] = "N.A." treatDF$Value = factor(treatDF$Value, levels=c("0","1","N.A.")) treatPL = ggplotGrob( ggplot(treatDF, aes(x=PatientID, y=Factor, fill=Value)) +geom_tile() + scale_fill_manual(values=bwScale, name="Treated", labels=c("0"="No","1"="Yes","N.A."="NA")) + theme(axis.ticks=element_blank(), axis.text=element_text(size=60, colour="black", margin=unit(0.5,"cm")), legend.key = element_rect(colour = "black"), legend.text=element_text(size=lfsize), legend.title=element_text(size=lfsize))) table(treatDF$Value)
IGHV status
Number of samples with (1) and without (0) the IGHV mutation.
ighvDF = data.frame(Factor="IGHV", PatientID=factor(patM, levels=patM), Value=patmeta[patM, "IGHV"]) ighvDF$Value = ifelse(ighvDF$Value=="M", 1, 0) ighvDF$Value[is.na(ighvDF$Value)] = "N.A." ighvDF$Value = factor(ighvDF$Value, levels=c("0","1","N.A.")) ighvPL = ggplotGrob( ggplot(ighvDF, aes(x=PatientID, y=Factor, fill=Value)) + geom_tile() + scale_fill_manual(values=bwScale, name="IGHV", labels=c("0"="Unmutated","1"="Mutated","N.A."="NA")) + theme(axis.ticks=element_blank(), axis.text=element_text(size=60, colour="black", margin=unit(0.5,"cm")), legend.key=element_rect(colour = "black"), legend.text=element_text(size=lfsize), legend.title=element_text(size=lfsize))) table(ighvDF$Value)
nX = length(patM) nY = ncol(factorsord) unY1 = 0.6*1.6 unY2 = 0.6*1.8 unX = 0.2 sp = 0.001 wdths = c(6, unX*nX, sp) hghts = c(sp, unY1,unY1,unY1,unY1, 0.8, sp, sp ,unY2*nY, sp) gt = gtable(widths=unit(wdths, "in"), heights=unit(hghts, "in")) # add the plots gt = gtable_add_grob(gt, sexPL$grobs[[whichInGrob(sexPL, "panel")]], 2, 2) gt = gtable_add_grob(gt, treatPL$grobs[[whichInGrob(treatPL, "panel")]], 3, 2) gt = gtable_add_grob(gt, agePL$grobs[[whichInGrob(agePL, "panel")]], 4, 2) gt = gtable_add_grob(gt, ighvPL$grobs[[whichInGrob(ighvPL, "panel")]], 5, 2) gt = gtable_add_grob(gt, mutPL$grobs[[whichInGrob(mutPL, "panel")]], 9, 2) # add x axis gt = gtable_add_grob(gt, mutPL$grobs[[whichInGrob(mutPL, "axis-b")]], 10, 2) # add y axis gt = gtable_add_grob(gt, sexPL$grobs[[whichInGrob(sexPL, "axis-l")]], 2, 1) gt = gtable_add_grob(gt, treatPL$grobs[[whichInGrob(treatPL, "axis-l")]], 3, 1) gt = gtable_add_grob(gt, agePL$grobs[[whichInGrob(agePL, "axis-l")]], 4, 1) gt = gtable_add_grob(gt, ighvPL$grobs[[whichInGrob(ighvPL, "axis-l")]], 5, 1) gt = gtable_add_grob(gt, mutPL$grobs[[whichInGrob(mutPL, "axis-l")]], 9, 1)
knitr::knit_hooks$set(crop=NULL)
#FIG# 1D grid.draw(gt)
knitr::knit_hooks$set(crop=knitr:::hook_pdfcrop)
#FIG# 1D BloodCancerMultiOmics2017:::drawLegends(plobj=list(agePL,sexPL,treatPL,ighvPL,mutPL))
We performed multiple checks on the data quality. Below we show two examples.
First, we compared the values of ATP luminescence of DMSO controls at the beginning and after 48 h of incubation. Second, we assessed reproducibility of the drug screening platform.
The ATP luminescence of the samples were measured on day 0. We compared this value with the ATP luminescence of negative control wells at 48 h, in order to assess the cell viability change without drug treatment during 48 h culturing.
Loading the data.
data("lpdAll")
Prepare table for plot.
plotTab = pData(lpdAll) %>% transmute(x=log10(ATPday0), y=log10(ATP48h), diff=ATP48h/ATPday0) %>% filter(!is.na(x))
Scatter plot to show the the correlation of ATP luminescence between day0 and 48h.
lm_eqn <- function(df){ m <- lm(y ~ 1, df, offset = x) ypred <- predict(m, newdata = df) r2 = sum((ypred - df$y)^2)/sum((df$y - mean(df$y)) ^ 2) eq <- substitute(italic(y) == italic(x) + a*","~~italic(r)^2~"="~r2, list(a = format(coef(m)[1], digits = 2), r2 = format(r2, digits = 2))) as.character(as.expression(eq)) } plotTab$ypred <- predict(lm(y~1,plotTab, offset = x), newdata = plotTab) sca <- ggplot(plotTab, aes(x= x, y = y)) + geom_point(size=3) + geom_smooth(data = plotTab, mapping = aes(x=x, y = ypred), method = lm, se = FALSE, formula = y ~ x) + geom_text(x = 5.2, y = 6.2, label = lm_eqn(plotTab), parse = TRUE, size =8) + xlab("log10(day0 ATP luminescence)") + ylab("log10(48h ATP luminescence)") + theme_bw() + theme(axis.title = element_text(size = 15, face = "bold"), axis.text = element_text(size=15), legend.position = "none") + coord_cartesian(xlim = c(4.6,6.3), ylim = c(4.6,6.3))
Histogram of the difference between day0 and 48h ATP level.
histo <- ggplot(plotTab, aes(x = diff)) + geom_histogram(col = "red", fill = "red", bins=30, alpha = 0.5) + theme_bw() + theme(axis.title = element_text(size = 15, face = "bold"), axis.text = element_text(size=15), legend.position = "none") + xlab("(48h ATP luminescence) / (day0 ATP luminescence)")
Combine plots together.
grid.arrange(sca, histo, ncol=2)
Drug screening platform tested three samples twice. Moreover, the measurements were taken in the two time points: 48 h and 72 h after drug treatment. Here we compare the reproducibility of the screening platform by calculating Pearson correlation coefficients for the each pair of replicates.
Loading the data.
data("day23rep")
Arranging the data.
maxXY = 125 plottingDF = do.call(rbind, lapply(c("day2","day3"), function(day) { tmp = merge( meltWholeDF(assayData(day23rep)[[paste0(day,"rep1")]]), meltWholeDF(assayData(day23rep)[[paste0(day,"rep2")]]), by=c("X","Y")) colnames(tmp) = c("PatientID", "DrugID", "ViabX", "ViabY") tmp[,c("ViabX", "ViabY")] = tmp[,c("ViabX", "ViabY")] * 100 tmp$Day = ifelse(day=="day2", "48h", "72h") tmp })) plottingDF$Shape = ifelse(plottingDF$ViabX > maxXY | plottingDF$ViabY > maxXY, "B", "A")
Calculate the Pearson correlation coefficient.
annotation = do.call(rbind, tapply(1:nrow(plottingDF), paste(plottingDF$PatientID, plottingDF$Day, sep="_"), function(idx) { data.frame(X=110, Y=10, Shape="A", PatientID=plottingDF$PatientID[idx[1]], Day=plottingDF$Day[idx[1]], Cor=cor(plottingDF$ViabX[idx], plottingDF$ViabY[idx], method="pearson")) }))
Plot the correlations together with coefficients (in a bottom-right corner).
#FIG# S31 ggplot(data=plottingDF, aes(x=ifelse(ViabX>maxXY,maxXY,ViabX), y=ifelse(ViabY>maxXY,maxXY,ViabY), shape=Shape)) + facet_grid(Day ~ PatientID) + theme_bw() + geom_hline(yintercept=100, linetype="dashed",color="darkgrey") + geom_vline(xintercept=100, linetype="dashed",color="darkgrey") + geom_abline(intercept=0, slope=1, colour="grey") + geom_point(size=1.5, alpha=0.6) + scale_x_continuous(limits=c(0,maxXY), breaks=seq(0,maxXY,25)) + scale_y_continuous(limits=c(0,maxXY), breaks=seq(0,maxXY,25)) + xlab("% viability - replicate 1") + ylab("% viability - replicate 2") + coord_fixed() + expand_limits(x = 0, y = 0) + theme(axis.title.x=element_text(size = rel(1), vjust=-1), axis.title.y=element_text(size = rel(1), vjust=1), strip.background=element_rect(fill="gainsboro")) + guides(shape=FALSE, size=FALSE) + geom_text(data=annotation, aes(x=X, y=Y, label=format(Cor, digits=2), size=1.2), colour="maroon", hjust=0.2)
The reproducibility of the measurements is high (mean r round(mean(annotation$Cor),2)
).
sessionInfo()
rm(list=ls())
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.