#' deconvolute given bulk with DTD using single-cell data
#'
#' @param exprs non negative numeric matrix containing single cell profiles
#' as columns and features as rows
#' @param pheno data.frame, with 'nrow(pheno)' must equal 'ncol(exprs)'.
#' Has to contain single cell labels in a column named 'cell_type'
#' @param bulks matrix containing bulk expression profiles as columns
#' @param exclude.from.signature vector of strings of cell types not to be
#' included in the signature matrix
#' @param max.genes numeric, maximum number of genes that will be included in
#' the signature for each celltype, default 1000
#' @param verbose boolean, default FALSE
#' @param cell.type.column string, which column of 'pheno'
#' holds the cell type information? default "cell_type"
#' @param patient.column string, which column of 'pheno'
#' holds the patient information; optional, default NULL
#' @param scale.cpm boolean, scale single-cell profiles to CPM? default FALSE
#' @param model pre-trained model for DTD deconvolution
#' as returned by this wrapper, default NULL
#' @param model_exclude character vector, cell type(s) to exclude
#' from the supplied pre-trained model, default NULL
#' @return list with four entries:
#' 1) est.props - matrix containing for each bulk the
#' estimated fractions of the cell types contained \cr
#' 2) sig.matrix - effective signature matrix used by the algorithm
#' '(features x cell types) \cr
#' 3) model - the trained DTD model\cr
#' @example run_dtd(training.exprs, training.pheno, bulks)
#' @export
run_dtd <- function(
exprs,
pheno,
bulks,
cell.type.column = "cell_type",
exclude.from.signature = NULL,
max.genes = 1000,
verbose = FALSE,
patient.column = NULL,
scale.cpm = FALSE,
model = NULL,
model_exclude = NULL
) {
suppressMessages(suppressWarnings(library(Matrix, quietly = TRUE)))
if (is.null(model)) {
# error checking
if (is.null(exprs) || is.null(pheno)){
stop("If no model is given, expression and pheno data are required.")
}
if (nrow(pheno) != ncol(exprs)) {
stop("Number of columns in exprs and rows in pheno do not match")
}
features <- intersect(rownames(exprs), rownames(bulks))
if (length(features) > 0) {
exprs <- exprs[features, ]
bulks <- bulks[features, ]
} else {
stop("no common features in bulks and expression data.")
}
if (scale.cpm) {
# prepare phenotype data and cell types to use
exprs <- scale_to_count(exprs)
}
}
if (!is.null(max.genes) && max.genes == 0) {
max.genes <- NULL
}
if (!is.null(exprs)) {
if (!is.matrix(exprs)) {
if (length(class(exprs)) == 1) {
if (! class(exprs) == "dgCMatrix") {
stop("exprs must be a matrix or sparse matrix (dgCMatrix)")
}
}
}
}
if(!is.matrix(bulks)){
if (length(class(bulks)) == 1) {
if(! class(bulks) == "dgCMatrix"){
stop("bulks must be a matrix or sparse matrix (dgCMatrix)")
}
}
}
if(is.null(model)){
# prepare phenotype data and cell types to use
cell.types <- as.character(pheno[, cell.type.column])
names(cell.types) <- colnames(exprs)
cts <- unique(cell.types)
include.in.x <- cts
if (! is.null(exclude.from.signature)) {
if (length(which(cts %in% exclude.from.signature)) > 0) {
include.in.x <- cts[-which(cts %in% exclude.from.signature)]
}
}
rm(cts)
if (is.null(max.genes)) max.genes <- 1000
# create reference profiles
sample.X <- DTD::sample_random_X(
included.in.X = include.in.x,
pheno = cell.types,
expr.data = Matrix::as.matrix(exprs),
percentage.of.all.cells = 0.3,
normalize.to.count = TRUE
)
sig.matrix <- sample.X$X.matrix
rm(sample.X)
# do no remove used samples right now; try keeping reference samples
# an option might be to remove these samples from the training data:
# samples.to.remove <- sample.X$samples.to.remove
# choose either max.genes genes per cell type or all available genes
# but set maximum to 4000 due to runtime
n.genes <- min(4000, nrow(exprs), length(unique(cell.types)) * max.genes)
# select the top n.genes most variable genes for deconvolution
top.features <- rownames(exprs)[
order(apply(exprs, 1, var), decreasing = TRUE)[1:n.genes]
]
exprs <- exprs[which(rownames(exprs) %in% top.features), ]
sig.matrix <- sig.matrix[top.features, ]
# create artificial mixtures to train DTD model on
n.per.mixture <- max(floor(0.1 * ncol(exprs)),3)
n.samples <- max(n.genes, 50)
training.bulks <- DTD::mix_samples(
expr.data = Matrix::as.matrix(exprs),
pheno = cell.types,
included.in.X = include.in.x,
n.samples = n.samples,
n.per.mixture = n.per.mixture,
verbose = FALSE
)
# set the starting parameters to 1
start.tweak <- rep(1, n.genes)
names(start.tweak) <- top.features
# train the DTD model
dtd.model <- suppressMessages(try(
DTD::train_deconvolution_model(
tweak = start.tweak,
X.matrix = sig.matrix,
train.data.list = training.bulks,
estimate.c.type = "direct",
verbose = FALSE,
NORM.FUN = "identity",
#learning.rate = 1,
cv.verbose = FALSE
),
silent = TRUE
))
}else{
dtd.model <- model
if (!is.null(model_exclude)) {
cts <- colnames(dtd.model$reference.X)
if (all(model_exclude %in% cts)) {
cts <- cts[-which(cts %in% model_exclude)]
dtd.model$reference.X <- dtd.model$reference.X[, cts, drop = FALSE]
}else{
stop("Not all cell types in 'model_exclude' are present in the model")
}
}
sig.matrix <- dtd.model$reference.X
}
if (class(dtd.model) != "try-error") {
genes <- intersect(rownames(bulks), rownames(dtd.model$reference.X))
dtd.model$reference.X <- dtd.model$reference.X[genes,]
dtd.model$best.model$Tweak <- dtd.model$best.model$Tweak[genes]
# use the model to estimate the composition of the supplied bulks
est.props <- DTD::estimate_c(
new.data = Matrix::as.matrix(bulks)[genes, , drop = F],
DTD.model = dtd.model,
estimate.c.type = "direct"
)
if (exists("include.in.x")) {
# if any cell types dropped out during estimation complete the matrix
if(!all(include.in.x %in% rownames(est.props))){
est.props <- complete_estimates(est.props, include.in.x)
}
}
} else {
# if the model building failed,
est.props <- NULL
}
# return estimated proportions and the effective signature matrix used
return(list(est.props = est.props,
sig.matrix = sig.matrix,
model = dtd.model))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.