#' Re-weight StabMap embedding
#'
#' Re-weights embedding according to given weights for each reference dataset.
#' This gives more or less weighting to each contributing dataset and method
#' (PCA or LDA),
#'
#' @param embedding Joint embedding as output from stabMap.
#' @param weights (optional) named numeric vector giving relative weights for
#' each reference dataset.
#' @param factor numeric multiplicative value to offset near-zero values.
#'
#' @return matrix of same dimensions as `embedding`.
#'
#' @examples
#' set.seed(2021)
#' assay_list = mockMosaicData()
#' lapply(assay_list, dim)
#'
#' # specify which datasets to use as reference coordinates
#' reference_list = c("D1", "D3")
#'
#' # specify some sample labels to distinguish using linear discriminant
#' # analysis (LDA)
#' labels_list = list(
#' D1 = rep(letters[1:5], length.out = ncol(assay_list[["D1"]]))
#' )
#'
#' # stabMap
#' out = stabMap(assay_list,
#' reference_list = reference_list,
#' labels_list = labels_list,
#' ncomponentsReference = 20,
#' ncomponentsSubset = 20)
#'
#' # look at the scale of each component and discriminant
#' boxplot(out, las = 2, outline = FALSE)
#'
#' # re-weight embedding for less contribution from LDs and equal contribution
#' # from PCs of both references
#' out_reweighted = reWeightEmbedding(out, weights = c("D1_LD" = 0.5, "D1_PC" = 1, "D3_PC" = 1))
#'
#' # look at the new scale of each component and discriminant
#' boxplot(out_reweighted, las = 2, outline = FALSE)
#'
#' @export
reWeightEmbedding = function(embedding, weights = NULL, factor = 1e6) {
# embedding is a cells x dimensions matrix
# weights is an optional named list (names correspond to all before the underscore)
# for weighting each embedding component
# factor is a multiplicative value to avoid tiny numbers
cols = as.character(interaction(gsub("_PC.*|_LD.*", "", colnames(embedding)),
ifelse(grepl("_PC", colnames(embedding)), "PC", "LD"), sep = "_"))
cols_split = split(colnames(embedding), cols)
message(paste0(c("reweighting for references: ", names(cols_split)),
sep = " "))
if (is.null(weights)) {
weights = lapply(cols_split, function(x) 1)
}
norms = lapply(cols_split, function(cols) {
sum(abs(embedding[,cols]))
})
norms_long = unsplit(norms, cols)
weights_long = factor*unlist(weights)[cols]
embedding_norm = t( (t(embedding) / norms_long) * weights_long)
return(embedding_norm)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.