Multiple.best.singlefit: Multiple.best.singlefit

Description Usage Arguments Value Examples

View source: R/dose_response_fitting.R

Description

Function where linear and several non-linear models are used to fit the curve of single drug effects on multiple cell lines at the same time.

Usage

1
2
Multiple.best.singlefit(data, resp = "Birth_rate", conc = "CONC",
  IC = "AIC", type = "continuous", ...)

Arguments

data

Concentration-response dataframe.

resp

Response to be fitted (Y axis). Default is Birth_rate.

conc

Name of the column with the drug concentration values.

IC

string for supplying the information criterion to be used. "AIC" and "BIC" are the two options. "AIC" by default.

type

a character string specifying the data type (parameter estimation will depend on the data type as different log likelihood function will be used).

...

Additional arguments for the selection of the best model fitting function. See ?model.select for more info.

Value

This function returns the best model fitted to each cell line data.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
## Not run: 
#Effect of Alvocidib on the cell counts of BT-20 and MCF7 cell lines.

filename=system.file("extdata","2cell_lines.txt",package="ACESO")

growth_data=read.cellcount.data(filename,sep="\t")

#Calculate net growth rate assuming an exponential growth of the cells:
growth_data<-net_growth_rate(growth_data)

#Fit the data with a 4 parameter log-logistic function:
Multiple.best.singlefit(growth_data,resp="Net_growth",conc="CONC")

## End(Not run)

Michorlab/ACESO documentation built on June 4, 2021, 4:57 p.m.