Description Usage Arguments Value See Also Examples
View source: R/response_surface_fit.R
Fits a generalized additive model (gam) or a polynomial surface (loess) to data of multiple cell lines.
1 2 3 | Multiple.resp.surface.fit(data, resp = "Birth_rate", conc1 = "CONC",
conc2 = "CONC2", Drug1.name = "Drug 1", Drug2.name = "Drug 2",
logscale = T, method = c("gam", "loess"), title = "")
|
data |
Concentration-effect dataframe. |
resp |
Name of the column with the response values. Default is Birth_rate. |
conc1 |
Name of the column with the concentration values for drug 1. |
conc2 |
Name of the column with the concentration values for drug 2. |
Drug1.name |
string to specify the name of drug 1. |
Drug2.name |
string to specify the name of drug 2. |
logscale |
determines whether the input variables will be plotted on a logarithmic scale, or a standard linear scale. Because this function is intended primarily for visualizing combined action dose-response, a logarithmic dose-pair space is the default. |
method |
array to specify if a generalized additive model (gam) or a polynomial surface (loess) model must be fitted to the data. |
title |
title for the drug. |
This function returns a fitted gam object (see gamObject
for a detailed description) or an object of class "loess".
1 2 3 4 5 6 7 | ## Not run:
data(Dactolisib_Trametinib_rates)
gam.model=Multiple.resp.surface.fit(GD,resp='Birth_rate',conc1='CONC',conc2='CONC2',
title=", GAM with raw data")
print(gam.model)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.