Multiple.resp.surface.fit: Multiple.resp.surface.fit

Description Usage Arguments Value See Also Examples

View source: R/response_surface_fit.R

Description

Fits a generalized additive model (gam) or a polynomial surface (loess) to data of multiple cell lines.

Usage

1
2
3
Multiple.resp.surface.fit(data, resp = "Birth_rate", conc1 = "CONC",
  conc2 = "CONC2", Drug1.name = "Drug 1", Drug2.name = "Drug 2",
  logscale = T, method = c("gam", "loess"), title = "")

Arguments

data

Concentration-effect dataframe.

resp

Name of the column with the response values. Default is Birth_rate.

conc1

Name of the column with the concentration values for drug 1.

conc2

Name of the column with the concentration values for drug 2.

Drug1.name

string to specify the name of drug 1.

Drug2.name

string to specify the name of drug 2.

logscale

determines whether the input variables will be plotted on a logarithmic scale, or a standard linear scale. Because this function is intended primarily for visualizing combined action dose-response, a logarithmic dose-pair space is the default.

method

array to specify if a generalized additive model (gam) or a polynomial surface (loess) model must be fitted to the data.

title

title for the drug.

Value

This function returns a fitted gam object (see gamObject for a detailed description) or an object of class "loess".

See Also

gamObject

Examples

1
2
3
4
5
6
7
## Not run: 
data(Dactolisib_Trametinib_rates)
gam.model=Multiple.resp.surface.fit(GD,resp='Birth_rate',conc1='CONC',conc2='CONC2', 
title=", GAM with raw data")
print(gam.model)

## End(Not run)

Michorlab/ACESO documentation built on June 4, 2021, 4:57 p.m.