#' @title Rolling GAS
#'
#' @description Function calculates GAS risk values from GAS package on rolling window.
#'
#' @param prices_panel a data.table object with columns: symbol, datetime, close.
#' @param row_index row index for which to calculate radf values.
#' @param windows Length of window for calculating forecasts on rolling window.
#' @param workers Number of workers for parallel processing
#' @param gas_dist Dist parametere in UniGASSpec fucntionUniGASSpec.
#' @param gas_scaling Scaling parametere in UniGASSpec fucntionUniGASSpec.
#' @param prediction_horizont GAS prediction horizont.
#'
#' @return Data.table with new features
#'
#' @import data.table
#' @import checkmate
#' @import doParallel
#' @import runner
#' @import GAS
#' @importFrom parallel makeCluster clusterExport clusterCall stopCluster
#' @importFrom stats complete.cases
#'
#' @export
rolling_gas <- function(prices_panel, row_index = 1:nrow(prices_panel), windows = c(200),
workers = 4L, gas_dist = "sstd", gas_scaling = "Identity",
prediction_horizont = 22) {
# solve No visible binding for global variable
symbol = close = returns = `.` = NULL
# checks
testSubset(c("symbol", "close"), colnames(prices_panel))
assert_double(prices_panel$close, lower = 1e-005)
# prepare data
prices_panel[, returns := close / shift(close) - 1]
prices_sample <- prices_panel[, .(symbol, date, returns)]
# GAS specification
GASSpec <- UniGASSpec(Dist = gas_dist, ScalingType = gas_scaling,
GASPar = list(location = TRUE, scale = TRUE, shape = TRUE, skewness = TRUE))
# start cluster
cl <- makeCluster(workers)
clusterExport(cl, c("prices_sample", "get_series_statistics", "GASSpec"), envir = environment())
clusterCall(cl, function() library(GAS))
clusterCall(cl, function() library(data.table))
# rolling arima forecasts
data_list <- list()
for (i in 1:length(windows)) {
rolling_data <- runner(
x = prices_sample,
f = function(x) {
# check if there is enough data
if (length(unique(x$symbol)) > 1) {
print(paste0("not enough data for symbol ", x$symbol[1]))
return(NA)
}
# calculate arima forecasts
Fit <- tryCatch(UniGASFit(GASSpec, na.omit(x$returns)), error = function(e) NA)
if (isS4(Fit)) y <- UniGASFor(Fit, H = prediction_horizont, ReturnDraws = TRUE) else y <- NA
if (any(is.na(y@Draws)) | is.na(y)) {
return(NA)
} else {
q <- as.data.table(GAS::quantile(y, c(0.01, 0.05)))
q <- get_series_statistics(q, "var")
es <- as.data.table(GAS::ES(y, c(0.01, 0.05)))
es <- get_series_statistics(es, "es")
moments <- as.data.table(GAS::getMoments(y))
moments <- get_series_statistics(moments, "moments")
f <- as.data.table(GAS::getForecast(y))
f <- get_series_statistics(f, "f")
results <- cbind(symbol = x$symbol[1], date = x$date[length(x$date)], q, es, moments, f)
colnames(results)[3:ncol(results)] <- paste(colnames(results)[3:ncol(results)], windows[i], sep = "_")
return(results)
}
},
k = windows[i],
at = row_index,
na_pad = TRUE,
simplify = FALSE,
cl = cl
)
gc()
data_list[[i]] <- rbindlist(rolling_data[lengths(rolling_data) > 1L])
}
stopCluster(cl)
data_all_windows <- Reduce(function(x, y) merge(x, y, by = c("symbol", "date"), all.x = TRUE, all.y = TRUE), data_list)
return(data_all_windows)
}
#' @title Help function for Rolling GAS
#'
#' @param df a data.table object with GAS results.
#' @param colname_prefix prefix for column names
#'
#' @return Data.table with GAS results
#'
#' @import data.table
#' @importFrom stats na.omit sd
#'
#' @export
get_series_statistics <- function(df, colname_prefix = "var") {
# solve No visible binding for global variable
id = value = col_name = `.` = variable = NULL
# calculate statistics
stats <- lapply(df, function(x) {
var_1 <- x[1]
var_subsample <- mean(x[1:(length(x)/2)], na.rm = TRUE)
var_all <- mean(x, na.rm = TRUE)
var_std <- sd(x, na.rm = TRUE)
list(var_1 = var_1, var_subsample = var_subsample, var_all = var_all, var_std = var_std)
})
stats <- melt(rbindlist(stats, idcol = "id"), id.vars = "id")
stats[, col_name := paste(variable, gsub("\\.", "_", id), sep = "_")]
stats <- transpose(stats[, .(col_name, value)], make.names = TRUE)
colnames(stats) <- gsub("var", colname_prefix, colnames(stats))
return(stats)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.