tests/testthat/test-parameterSweep.R

# @file test-parameterSweep.R
#
# Copyright 2024 Observational Health Data Sciences and Informatics
#
# This file is part of CohortMethod
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# library(CohortMethod)
library("testthat")

# This is a broad, shallow sweep of all functionality. It checks whether the code produces an output
# (and does not throw an error) under a wide range of parameter settings
set.seed(1234)
data(cohortMethodDataSimulationProfile)
sampleSize <- 1000
cohortMethodData <- simulateCohortMethodData(cohortMethodDataSimulationProfile, n = sampleSize)

test_that("cohortMethodData functions", {
  expect_output(print(cohortMethodData), "CohortMethodData object.*")
  s <- summary(cohortMethodData)
  expect_s3_class(s, "summary.CohortMethodData")
  expect_equal(s$targetPersons + s$comparatorPersons, sampleSize)
  expect_output(print(s), "CohortMethodData object summary.*")

  file <- tempfile()
  cmd1 <- Andromeda::copyAndromeda(cohortMethodData)
  attr(cmd1, "metaData") <- attr(cohortMethodData, "metaData")
  class(cmd1) <- "CohortMethodData"
  saveCohortMethodData(cmd1, file)
  cmd2 <- loadCohortMethodData(file)
  expect_identical(collect(cohortMethodData$cohorts), collect(cmd2$cohorts))
  expect_identical(collect(cohortMethodData$outcomes), collect(cmd2$outcomes))
  expect_equal(collect(cohortMethodData$covariates), collect(cmd2$covariates))
  expect_equal(collect(cohortMethodData$covariateRef), collect(cmd2$covariateRef))
  expect_equal(collect(cohortMethodData$analysisRef), collect(cmd2$analysisRef))
  expect_equivalent(attr(cohortMethodData, "metaData"), attr(cmd2, "metaData"))
  close(cmd2)
  unlink(file, force = TRUE)
})

test_that("Create study population functions", {
  studyPop <- createStudyPopulation(cohortMethodData,
    outcomeId = 194133,
    removeSubjectsWithPriorOutcome = TRUE,
    minDaysAtRisk = 1
  )
  expect_true(all(studyPop$timeAtRisk > 0))
  peopleWithPriorOutcomes <- cohortMethodData$outcomes %>%
    filter(outcomeId == 194133 & daysToEvent < 0) %>%
    distinct(rowId) %>%
    pull()
  expect_false(any(peopleWithPriorOutcomes %in% studyPop$rowId))

  aTable <- getAttritionTable(studyPop)
  expect_s3_class(aTable, "data.frame")

  plot <- plotTimeToEvent(cohortMethodData,
    outcomeId = 194133
  )
  expect_s3_class(plot, "ggplot")

  plot <- plotFollowUpDistribution(studyPop)
  expect_s3_class(plot, "ggplot")

  mdrr <- computeMdrr(studyPop)
  expect_s3_class(mdrr, "data.frame")
})

test_that("Propensity score functions", {
  studyPop <- createStudyPopulation(cohortMethodData,
    outcomeId = 194133,
    removeSubjectsWithPriorOutcome = TRUE,
    minDaysAtRisk = 1
  )
  # Cross-validation:
  ps <- createPs(cohortMethodData, studyPop)

  ps <- createPs(cohortMethodData, studyPop, prior = createPrior("laplace", 0.1, exclude = 0))
  expect_lt(0.65, computePsAuc(ps)[1])

  propensityModel <- getPsModel(ps, cohortMethodData)
  expect_s3_class(propensityModel, "data.frame")

  for (scale in c("preference", "propensity")) {
    for (type in c("density", "histogram")) {
      p <- plotPs(ps, scale = scale, type = type)
      expect_s3_class(p, "ggplot")
    }
  }

  psTrimmed <- trimByPsToEquipoise(ps)
  expect_s3_class(psTrimmed, "data.frame")

  for (scale in c("preference", "propensity")) {
    for (type in c("density", "histogram")) {
      p <- plotPs(psTrimmed, ps, scale = scale, type = type)
      expect_s3_class(p, "ggplot")
    }
  }

  equipoise <- computeEquipoise(ps)
  expect_gt(equipoise, 0.5)

  for (numberOfStrata in c(2, 5, 10, 20)) {
    strata <- stratifyByPs(psTrimmed, numberOfStrata = numberOfStrata)
    expect_s3_class(strata, "data.frame")
  }

  for (numberOfStrata in c(2, 5, 10, 20)) {
    strata <- stratifyByPsAndCovariates(psTrimmed,
      numberOfStrata = numberOfStrata,
      cohortMethodData = cohortMethodData,
      covariateIds = c(0:27 * 1000 + 3, 8532001)
    ) # age + sex
    expect_s3_class(strata, "data.frame")
  }

  for (caliper in c(0, 0.25)) {
    for (caliperScale in c("propensity score", "standardized", "standardized logit")) {
      for (maxRatio in c(0, 1, 3)) {
        strata <- matchOnPs(psTrimmed,
          caliper = caliper,
          caliperScale = caliperScale,
          maxRatio = maxRatio
        )
        expect_s3_class(strata, "data.frame")
      }
    }
  }

  for (caliper in c(0, 0.25)) {
    for (caliperScale in c("propensity score", "standardized", "standardized logit")) {
      for (maxRatio in c(0, 1, 3)) {
        strata <- matchOnPsAndCovariates(psTrimmed,
          caliper = caliper,
          caliperScale = caliperScale,
          maxRatio = maxRatio,
          cohortMethodData = cohortMethodData,
          covariateIds = c(11:27, 8507)
        ) # age + sex
        expect_s3_class(strata, "data.frame")
      }
    }
  }
})

test_that("Balance functions", {
  studyPop <- createStudyPopulation(cohortMethodData,
    outcomeId = 194133,
    removeSubjectsWithPriorOutcome = TRUE,
    minDaysAtRisk = 1
  )
  ps <- createPs(cohortMethodData, studyPop, prior = createPrior("laplace", 0.1, exclude = 0))
  psTrimmed <- trimByPsToEquipoise(ps)
  strata <- matchOnPs(psTrimmed, caliper = 0.25, caliperScale = "standardized", maxRatio = 1)

  balance <- computeCovariateBalance(strata, cohortMethodData)
  expect_s3_class(balance, "data.frame")

  p <- plotCovariateBalanceScatterPlot(balance)
  expect_s3_class(p, "ggplot")

  p <- plotCovariateBalanceOfTopVariables(balance)
  expect_s3_class(p, "ggplot")

  p <- plotCovariatePrevalence(balance)
  expect_s3_class(p, "ggplot")

  table1 <- createCmTable1(balance)
  expect_s3_class(table1, "data.frame")

  covariateIds <- 0:20 * 1000 + 3
  balance <- computeCovariateBalance(strata, cohortMethodData, covariateFilter = covariateIds)
  expect_s3_class(balance, "data.frame")
  expect_true(all(balance$covariateId %in% covariateIds))
})

test_that("Outcome functions", {
  studyPop <- createStudyPopulation(cohortMethodData,
    outcomeId = 194133,
    removeSubjectsWithPriorOutcome = TRUE,
    minDaysAtRisk = 1,
    riskWindowStart = 0,
    riskWindowEnd = 365
  )
  ps <- createPs(cohortMethodData, studyPop, prior = createPrior("laplace", 0.1, exclude = 0))

  psTrimmed <- trimByPsToEquipoise(ps)
  strata <- matchOnPs(psTrimmed, caliper = 0.25, caliperScale = "standardized", maxRatio = 1)

  lbs <- c()
  # params <- c()
  for (modelType in c("logistic", "poisson", "cox")) {
    for (stratified in c(TRUE, FALSE)) {
      for (useCovariates in c(TRUE, FALSE)) {
        writeLines(paste(
          "modelType:",
          modelType,
          ",stratified:",
          stratified,
          ",useCovariates:",
          useCovariates
        ))

        outcomeModel <- fitOutcomeModel(
          population = strata,
          cohortMethodData = cohortMethodData,
          modelType = modelType,
          stratified = stratified,
          useCovariates = useCovariates,
          prior = createPrior("laplace", 0.1)
        )
        expect_s3_class(outcomeModel, "OutcomeModel")
        lbs <- c(lbs, confint(outcomeModel)[1])
        # params <-
        # c(params,paste('type:',type,',stratified:',stratified,',useCovariates:',useCovariates,',addExposureDaysToEnd:',addExposureDaysToEnd))
      }
    }
  }
  writeLines("IPTW")
  outcomeModel <- fitOutcomeModel(
    population = strata,
    cohortMethodData = cohortMethodData,
    modelType = modelType,
    stratified = FALSE,
    useCovariates = FALSE,
    inversePtWeighting = TRUE
  )
  expect_s3_class(outcomeModel, "OutcomeModel")
  lbs <- c(lbs, confint(outcomeModel)[1])


  # results <- data.frame(logRr = logRrs, param = params) results <- results[order(results$logRr),]
  # results

  # All analyses are fundamentally different, so should have no duplicate values at full precision:
  expect_equal(length(unique(lbs)), length(lbs))
})


test_that("Functions on outcome model", {
  studyPop <- createStudyPopulation(cohortMethodData,
    outcomeId = 194133,
    removeSubjectsWithPriorOutcome = TRUE,
    minDaysAtRisk = 1,
    riskWindowStart = 0,
    riskWindowEnd = 365
  )
  ps <- createPs(cohortMethodData, studyPop, prior = createPrior("laplace", 0.1, exclude = 0))

  strata <- matchOnPs(ps, caliper = 0.25, caliperScale = "standardized", maxRatio = 1)
  outcomeModel <- fitOutcomeModel(
    population = strata,
    cohortMethodData = cohortMethodData,
    modelType = "cox",
    stratified = TRUE,
    useCovariates = TRUE,
    prior = createPrior("laplace", 0.1)
  )

  expect_output(print(outcomeModel), "Model type: cox.*")

  p <- plotKaplanMeier(strata)
  expect_s3_class(p, "grob")

  p <- drawAttritionDiagram(outcomeModel)
  expect_s3_class(p, "ggplot")

  cf <- coef(outcomeModel)
  ci <- confint(outcomeModel)
  expect_gt(cf, ci[1])
  expect_lt(cf, ci[2])

  fullOutcomeModel <- getOutcomeModel(outcomeModel, cohortMethodData)
  expect_s3_class(fullOutcomeModel, "data.frame")
})
OHDSI/CohortMethod documentation built on Oct. 9, 2024, 12:50 p.m.