"lognormal.2" <- function(
fixed = c(NA, NA, NA), names = c("b", "d", "e"))
{
## Checking arguments
numParm <- 3
if (!is.character(names) | !(length(names) == numParm)) {stop("Not correct 'names' argument")}
if ( !(length(fixed) == numParm) ) {stop("Not correct 'fixed' argument")}
## Handling 'fixed' argument
notFixed <- is.na(fixed)
parmVec <- rep(0, numParm)
parmVec[!notFixed] <- fixed[!notFixed]
## Defining the model function
fct <- function(dose, parm)
{
parmMat <- matrix(parmVec, nrow(parm), numParm, byrow = TRUE)
parmMat[, notFixed] <- parm
# parmMat[, 2]/(1 + exp(- parmMat[, 1]*(log(dose + 0.000001) - log(parmMat[, 3]))))
parmMat[, 2] * pnorm(parmMat[, 1] * (log(dose + 0.000001) - log(parmMat[, 3])))
}
## Defining the self starter function
ssfct <- function(data){
x <- data[, 1]
y <- data[, 2]
y <- y[x > 0]
x <- x[x > 0]
y <- y[!is.na(x)]
x <- x[!is.na(x)]
d <- max(y) * 1.01
## Linear regression on pseudo y values
pseudoY <- log((d - y)/(y + 0.000001))
coefs <- coef( lm(pseudoY ~ log(x)))
b <- - coefs[2]
k <- coefs[1];
e <- exp(k/b)
value <- c(b, ifelse(d>=1, 0.999, d), e)
return(value[notFixed])
}
## Defining names
names <- names[notFixed]
##Defining the first derivatives (in the parameters)
deriv1 <- function(dose, parm)
{
# ~d * pnorm(b * (log(x + 0.000001) - log(e)))
parmMat <- matrix(parmVec, nrow(parm), numParm, byrow = TRUE)
parmMat[, notFixed] <- parm
fctb <- deriv(~d * pnorm(b * (log(x + 0.000001) - log(e))), "b",
function.arg = c("b", "d", "e", "x"))
fctd <- deriv(~d * pnorm(b * (log(x + 0.000001) - log(e))), "d",
function.arg = c("b", "d", "e", "x"))
fcte <- deriv(~d * pnorm(b * (log(x + 0.000001) - log(e))), "e",
function.arg = c("b", "d", "e", "x"))
derb <- as.numeric( attr(fctb(parmMat[, 1], parmMat[, 2], parmMat[, 3], dose), "gradient") )
derd <- as.numeric( attr(fctd(parmMat[, 1], parmMat[, 2], parmMat[, 3], dose), "gradient") )
dere <- as.numeric( attr(fcte(parmMat[, 1], parmMat[, 2], parmMat[, 3], dose), "gradient") )
cbind(derb, derd, dere)[, notFixed]
}
deriv2 <- NULL
##Defining the first derivative (in the dose)
derivx <- function(x, parm)
{
parmMat <- matrix(parmVec, nrow(parm), numParm, byrow = TRUE)
parmMat[, notFixed] <- parm
retVec <- deriv(~d * pnorm(b * (log(x + 0.000001) - log(e))), "x",
function.arg = c("b", "d", "e", "x"))
retVec
}
## Defining the ED function
edfct <- function(parm, respl, reference, type, ...)
{
edfct.abs <- function(p1, p2, p3, respl){
tempVal <- qnorm(respl/p2)
exp( tempVal * 1/p1 + log(p3) )
}
edfct.rel <- function(p1, p2, p3, respl){
tempVal <- qnorm(respl)
exp( tempVal * 1/p1 + log(p3) )
}
respl <- respl
parmVec[notFixed] <- parm
if (type == "absolute")
{
EDp <- edfct.abs(parmVec[1], parmVec[2], parmVec[3], respl)
d1.1 <- edfct.abs(parmVec[1], parmVec[2], parmVec[3], respl)
d1.2 <- edfct.abs(parmVec[1] + 10e-7, parmVec[2], parmVec[3], respl)
EDder1 <- (d1.2 - d1.1)/10e-7
d1.1 <- edfct.abs(parmVec[1], parmVec[2], parmVec[3], respl)
d1.2 <- edfct.abs(parmVec[1], parmVec[2] + 10e-7, parmVec[3], respl)
EDder2 <- (d1.2 - d1.1)/10e-7
d1.1 <- edfct.abs(parmVec[1], parmVec[2], parmVec[3], respl)
d1.2 <- edfct.abs(parmVec[1], parmVec[2], parmVec[3] + 10e-7, respl)
EDder3 <- (d1.2 - d1.1)/10e-7
} else {
EDp <- edfct.rel(parmVec[1], parmVec[2], parmVec[3], respl)
d1.1 <- edfct.rel(parmVec[1], parmVec[2], parmVec[3], respl)
d1.2 <- edfct.rel(parmVec[1] + 10e-7, parmVec[2], parmVec[3], respl)
EDder1 <- (d1.2 - d1.1)/10e-7
d1.1 <- edfct.rel(parmVec[1], parmVec[2], parmVec[3], respl)
d1.2 <- edfct.rel(parmVec[1], parmVec[2] + 10e-7, parmVec[3], respl)
EDder2 <- (d1.2 - d1.1)/10e-7
d1.1 <- edfct.rel(parmVec[1], parmVec[2], parmVec[3], respl)
d1.2 <- edfct.rel(parmVec[1], parmVec[2], parmVec[3] + 10e-7, respl)
EDder3 <- (d1.2 - d1.1)/10e-7
}
EDder <- c(EDder1, EDder2, EDder3)
return(list(EDp, EDder[notFixed]))
}
## Defining the inverse function
invfct <- function(y, parm)
{
parmVec[notFixed] <- parm
# exp(log((parmVec[2] - y)/(y))/parmVec[1] + log(parmVec[3]))
exp(1/parmVec[1]*qnorm(y/parmVec[2]) + log(parmVec[3]))
}
## Returning the function with self starter and names
returnList <-
list(fct = fct, ssfct = ssfct, names = names, deriv1 = deriv1, deriv2 = deriv2, derivx = derivx,
edfct = edfct, inversion = invfct,
name = "lognormal.2",
text = "Log-normal distribution of event times",
noParm = sum(is.na(fixed)),
fixed = fixed)
class(returnList) <- "drcMean"
invisible(returnList)
}
"lognormal" <- function(
fixed = c(NA, NA, NA), names = c("log-b", "logit-d", "log-e"))
{
## Checking arguments
numParm <- 3
if (!is.character(names) | !(length(names) == numParm)) {stop("Not correct 'names' argument")}
if (!(length(fixed) == numParm) ) {stop("Not correct 'fixed' argument")}
## Handling 'fixed' argument
notFixed <- is.na(fixed)
parmVec <- rep(0, numParm)
parmVec[!notFixed] <- fixed[!notFixed]
## Defining the model function
fct <- function(dose, parm)
{
parmMat <- matrix(parmVec, nrow(parm), numParm, byrow = TRUE)
parmMat[, notFixed] <- parm
if(!is.na(fixed[2])){
d <- 1
} else {
logitd <- parmMat[,2] # ifelse(parmMat[,2] > 20, 20, parmMat[,2])
d <- exp(logitd)/(1 + exp(logitd))
# d <- ifelse(is.nan(d), 1, d)
}
d * pnorm((log(dose + 0.000001) - parmMat[, 3])/exp(parmMat[, 1]))
# d * pnorm(parmMat[, 1]*(log(dose + 0.000001) - log(parmMat[, 3])))
}
## Defining the self starter function
ssfct <- function(data){
x <- data[, 1]
y <- data[, 2]
y <- y[x > 0]
x <- x[x > 0]
# print(data)
d <- max(y) * 1.01
## Linear regression on pseudo y values
pseudoY <- log((d - y)/(y + 0.000001))
coefs <- coef( lm(pseudoY ~ log(x)))
b <- - 1/coefs[2]
k <- coefs[1]
e <- k * b
d <- ifelse(d > 1, 0.99, d)
d <- log(d/(1 - d)) # exp(d)/(1 + exp(d))
# print(d); print(exp(d)/(1 + exp(d)))
value <- c(log(b), ifelse(d>=1, 0.999, d), e)
return(value[notFixed])
}
## Defining names
names <- names[notFixed]
##Defining the first derivatives (in the parameters)
deriv1 <- function(dose, parm)
{
parmMat <- matrix(parmVec, nrow(parm), numParm, byrow = TRUE)
parmMat[, notFixed] <- parm
meanFct <- ~ exp(d)/(1 + exp(d)) * pnorm((log(x + 0.000001) - e)/b)
fctb <- deriv(meanFct, "b",
function.arg = c("b", "d", "e", "x"))
fctd <- deriv(meanFct, "d",
function.arg = c("b", "d", "e", "x"))
fcte <- deriv(meanFct, "e",
function.arg = c("b", "d", "e", "x"))
# print(fctb(parmMat[, 1], parmMat[, 2], parmMat[, 3], dose)); stop()
derb <- as.numeric( attr(fctb(parmMat[, 1], parmMat[, 2], parmMat[, 3], dose), "gradient") )
derd <- as.numeric( attr(fctd(parmMat[, 1], parmMat[, 2], parmMat[, 3], dose), "gradient") )
dere <- as.numeric( attr(fcte(parmMat[, 1], parmMat[, 2], parmMat[, 3], dose), "gradient") )
cbind(derb, derd, dere)[, notFixed]
}
deriv2 <- NULL
##Defining the first derivative (in the dose)
derivx <- function(x, parm)
{
parmMat <- matrix(parmVec, nrow(parm), numParm, byrow = TRUE)
parmMat[, notFixed] <- parm
meanFct <- ~ exp(d)/(1 + exp(d)) * pnorm((log(x + 0.000001) - e)/b)
retVec <- deriv(meanFct, "x",
function.arg = c("b", "d", "e", "x"))
retVec
}
## Defining the ED function
edfct <- function(parm, respl, reference, type, ...)
{
edfct.abs <- function(p1, p2, p3, respl){
if(!is.na(fixed[2])) d <- 1 else d <- exp(p2)/(1 + exp(p2))
tempVal <- qnorm(respl/d)
exp( tempVal * exp(p1) + p3 )
}
edfct.rel <- function(p1, p2, p3, respl){
# d <- exp(p2)/(1 + exp(p2))
tempVal <- qnorm(respl)
exp( tempVal * exp(p1) + p3 )
}
respl <- respl
parmVec[notFixed] <- parm
if (type == "absolute")
{
EDp <- edfct.abs(parmVec[1], parmVec[2], parmVec[3], respl)
d1.1 <- edfct.abs(parmVec[1], parmVec[2], parmVec[3], respl)
d1.2 <- edfct.abs(parmVec[1] + 10e-7, parmVec[2], parmVec[3], respl)
EDder1 <- (d1.2 - d1.1)/10e-7
d1.1 <- edfct.abs(parmVec[1], parmVec[2], parmVec[3], respl)
d1.2 <- edfct.abs(parmVec[1], parmVec[2] + 10e-7, parmVec[3], respl)
EDder2 <- (d1.2 - d1.1)/10e-7
d1.1 <- edfct.abs(parmVec[1], parmVec[2], parmVec[3], respl)
d1.2 <- edfct.abs(parmVec[1], parmVec[2], parmVec[3] + 10e-7, respl)
EDder3 <- (d1.2 - d1.1)/10e-7
} else {
EDp <- edfct.rel(parmVec[1], parmVec[2], parmVec[3], respl)
d1.1 <- edfct.rel(parmVec[1], parmVec[2], parmVec[3], respl)
d1.2 <- edfct.rel(parmVec[1] + 10e-7, parmVec[2], parmVec[3], respl)
EDder1 <- (d1.2 - d1.1)/10e-7
d1.1 <- edfct.rel(parmVec[1], parmVec[2], parmVec[3], respl)
d1.2 <- edfct.rel(parmVec[1], parmVec[2] + 10e-7, parmVec[3], respl)
EDder2 <- (d1.2 - d1.1)/10e-7
d1.1 <- edfct.rel(parmVec[1], parmVec[2], parmVec[3], respl)
d1.2 <- edfct.rel(parmVec[1], parmVec[2], parmVec[3] + 10e-7, respl)
EDder3 <- (d1.2 - d1.1)/10e-7
}
EDder <- c(EDder1, EDder2, EDder3)
print(EDder)
return(list(EDp, EDder[notFixed]))
}
## Defining the inverse function
invfct <- function(y, parm)
{
parmVec[notFixed] <- parm
exp(exp(parmVec[1])*qnorm(y/parmVec[2]) + parmVec[3])
# exp(log(((parmVec[3] - parmVec[2])/(y - parmVec[2])) - 1)/parmVec[1] + log(parmVec[3]))
}
linkFct <- function(){
link1 <- "1/exp(b)"
link2 <- "exp(d)/(1 + exp(d))"
link3 <- "exp(e)"
link <- c(link1, link2, link3)
names(link) <- c("b", "d", "e")
return(link[notFixed])
}
## Returning the function with self starter and names
returnList <-
list(fct = fct, ssfct = ssfct, names = names, deriv1 = deriv1, deriv2 = deriv2, derivx = derivx,
edfct = edfct, inversion = invfct, linkFct = linkFct,
name = "lognormal",
text = "Log-normal distribution of event times",
noParm = sum(is.na(fixed)),
fixed = fixed)
class(returnList) <- "drcMean"
invisible(returnList)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.