R/model.matrix.diallel_v2.00.R

Defines functions SCAmis GCAmis DD GCAC Hi MDD H.BAR REC.G3 REC RSCA SCA.GE SCA.G3 SCA tSCA RGCA SP VEi GCA matBlock blockMatrixDiagonal model.matrixDiallel.MET model.matrixDiallel model.matrix.diallel

Documented in blockMatrixDiagonal DD GCA GCAC GCAmis H.BAR Hi matBlock MDD model.matrix.diallel model.matrixDiallel model.matrixDiallel.MET REC REC.G3 RGCA RSCA SCA SCA.G3 SCA.GE SCAmis SP tSCA VEi

# This functions create model matrices for diallel models
# Date of last edit: 19/07/2021
# Removing limitation for less than 10 parentals
model.matrix.diallel <- function(object, ...){
  return(object$modMatrix)
}

model.matrixDiallel <- function(formula, Block = NULL, Env = NULL,
                                 fct = NULL, data = NULL,
                                type = "nested"){

  if(is.null(fct)){
    # This is a formula based output
    # This is used by one who knows what he is doing, and makes
    # direct use of the functions GCA, SCA and so on
    X <- model.matrix(formula, data)
    # X <- X1[,-1]
    # attr(X, "assign") <- attr(X1, "assign")[-1] - 1
    # attr(X, "assign") <- attr(X1, "assign")[-1] - 1
    } else {
    # fct based output.
    # It creates the incidence matrices for specific models
    mf <- match.call(expand.dots = FALSE) # Riprende la chiamata, con i nomi
    m <- match(c("formula", "Block", "Env", "data"), names(mf), 0L) # Trova nella chiamata la formula. m rappresenta la posizione della formula nella chiamata
    mf <- mf[c(1L, m)]
    mf$drop.unused.levels <- TRUE
    mf[[1L]] <- quote(stats::model.frame)
    mf <- eval(mf, parent.frame())
    mt <- attr(mf, "terms")
    pars <- attr(mt, "term.labels")

    bName <- deparse(substitute(Block))  # storing name of Blocks
    Block <- model.extract(mf, "Block")
    eName <- deparse(substitute(Env))  # storing name of Env
    Env <- model.extract(mf, "Env")

    if(missing(data) == T){
      Par1 <- mf[,1]
      Par2 <- mf[,2]
    } else {
      Par1 <- data[[pars[1]]]
      Par2 <- data[[pars[2]]]
    }

    if(is.null(Env) == T){
      # Experiments in one environment
      n <- length(Par1)
      P1 <- factor(as.character(Par1))
      P2 <- factor(as.character(Par2))
      nGroups <- 0
      groups <- c(nGroups)
      X <- cbind(Intercept = rep(1, n))
      reps <- c(1)
      namEffs <- c("Intercept")

      if(is.null(Block) == F) {
        Block <- factor(Block)
        B <- matBlock(~Block)
        colnames(B) <- paste("Block", levels(Block)[-length(levels(Block))], sep = "")
        nGroups <- 1
        groups <- c(groups, nGroups)
        X <- cbind(X, B)
        reps <- c(reps, length(B[1,]))
        namEffs <- c(namEffs, "Block")
      }

      if(fct == "HAYMAN1"){
        # HAYMAN1 - con tSCA #############################
        # 6/04/2020

        # Matrix for GCA
        Z <- GCA(P1, P2)

        # Matrix tSCA
        SCA <- tSCA(P1, P2)

        #Matrix for RGCA
        RGCA <- RGCA(P1, P2)

        #Matrix for RSCA
        rec <- RSCA(P1, P2)

        # Building incidence matrix (0:5)
        X <- cbind(X, Z, SCA, RGCA, rec)
        groups <- c(groups, seq(nGroups+1, nGroups+4, 1))
        reps <- c(reps, length(Z[1,]), length(SCA[1,])
                                ,length(RGCA[1,])
                                ,length(rec[1,]))
        levs <- rep(groups, reps)
        attr(X, "assign") <- levs
        namEffs <- c(namEffs, "GCA","tSCA", "RGCA", "RSCA",
                                   "Residuals")
        attr(X, "namEff") <- namEffs

      } else if(fct == "HAYMAN2"){
          # HAYMAN2 - SCA decomposta ###########
          # 23/03/2020

          # Matrix for crosses
          crM <- MDD(P1, P2)

          # Matrix for GCA
          Z <- GCA(P1, P2)
          # nams <- paste("gca_", levels(P1)[1:(length(levels(P1))-1)], sep="")
          # colnames(Z) <- c(nams)

          # Matrix for h.i
          H <- DD(P1, P2)

          # Matrix for sca
          SCA <- SCA(P1, P2)
          #colnames(SCA) <- paste("sca_", colnames(SCA), sep = "")

          # Matrix for RGCA
          RGCA <- RGCA(P1, P2)
          # nams <- paste("rgca_", levels(P1)[1:length(levels(P1))-1], sep="")
          # colnames(RGCA) <- c(nams)

          # Matrix for RSCA
          rec <- RSCA(P1, P2)
          # colnames(rec) <- paste("rsca_", colnames(rec), sep = "")

          # Building incidence matrix (0:7)
          X <- cbind(X, crM, Z, H, SCA, RGCA, rec)
          groups <- c(groups, seq(nGroups+1, nGroups+6, 1))
          reps <- c(reps, 1, length(Z[1,]), length(H[1,])
                                  ,length(SCA[1,])
                                  ,length(RGCA[1,])
                                  ,length(rec[1,]))
          levs <- rep(groups, reps)
          attr(X, "assign") <- levs
          namEffs <- c(namEffs, "MDD", "GCA", "DD", "SCA",
                       "RGCA", "RSCA", "Residuals")
          attr(X, "namEff") <- namEffs

          } else if(fct == "GRIFFING1"){

          # GRIFFING 1 - Reciprocal effects #########################################
          #B <- matBlock(~Block)

          Z <- GCA(P1, P2)
          # nams <- paste("gca_", levels(P1)[1:(length(levels(P1))-1)], sep="")
          # colnames(Z) <- c(nams)

          SCA <- tSCA(P1, P2)
          # colnames(SCA) <- paste("sca_", colnames(SCA), sep = "")

          rec <- REC(P1, P2)
          # colnames(rec) <- paste("rec_", colnames(rec), sep = "")

          # Building incidence matrix (0:4)
          X <- cbind(X, Z, SCA, rec)
          groups <- c(groups, seq(nGroups+1, nGroups+3, 1))
          reps <- c(reps, length(Z[1,]),
                          length(SCA[1,])
                        , length(rec[1,]))
          levs <- rep(groups, reps)
          attr(X, "assign") <- levs
          namEffs <- c(namEffs, "GCA", "tSCA", "Reciprocals",
                                     "Residuals")
          attr(X, "namEff") <- namEffs

        } else if(fct == "GRIFFING2"){
          # GRIFFING 2 - No reciprocals #######################
          # 23/03/2020

          #B <- matBlock(~Block)

          Z <- GCA(P1, P2)
          # nams <- paste("gca_", levels(P1)[1:(length(levels(P1))-1)], sep="")
          # colnames(Z) <- c(nams)
          SCA <- tSCA(P1, P2)
          # colnames(SCA) <- paste("sca_", colnames(SCA), sep = "")

          # Building incidence matrix (0:3)
          X <- cbind(X, Z, SCA)
          groups <- c(groups, seq(nGroups+1, nGroups+2, 1))
          reps <- c(reps, length(Z[1,]),
                          length(SCA[1,]))
          levs <- rep(groups, reps)
          attr(X, "assign") <- levs
          namEffs <- c(namEffs, "GCA", "tSCA",
                                     "Residuals")
          attr(X, "namEff") <- namEffs
        } else if(fct == "GRIFFING3"){
          # GRIFFING 3 - Reciprocal effects, no selfs ###################
          Z <- GCA(P1, P2)
          # SCA <- SCA.G3(P1, P2)
          SCA <- SCA(P1, P2) # Corrected on 1/7/21
          # rec <- REC.G3(P1, P2)
          rec <- REC(P1, P2) # Corrected on 2/3/21
          X <- cbind(X, Z, SCA, rec)
          groups <- c(groups, seq(nGroups+1, nGroups+3, 1))
          reps <- c(reps, length(Z[1,]),
                    length(SCA[1,])
                    , length(rec[1,]))
          levs <- rep(groups, reps)
          attr(X, "assign") <- levs
          namEffs <- c(namEffs, "GCA", "SCA", "Reciprocals",
                       "Residuals")
          attr(X, "namEff") <- namEffs

        } else if(fct == "GRIFFING4"){
          # GRIFFING 4 - No reciprocals, no selfs #########
          # Z <- GCA(P1, P2) # Original
          Z <- GCAmis(P1, P2) # Edited on 20/03/23
          # SCA <- SCA.G3(P1, P2) # Original
          # SCA <- SCA(P1, P2) # Edited on 1/7/21
          SCA <- SCAmis(P1, P2) # Edited on 20/03/23
          X <- cbind(X, Z, SCA)
          groups <- c(groups, seq(nGroups+1, nGroups+2, 1))
          reps <- c(reps, length(Z[1,]),
                    length(SCA[1,]))
          levs <- rep(groups, reps)
          attr(X, "assign") <- levs
          namEffs <- c(namEffs, "GCA", "SCA",
                       "Residuals")
          attr(X, "namEff") <- namEffs

        } else if(fct == "GE2"){
          # GE2 - Senza reciproci ####################
          # 23/03/2020
          # B <- matBlock(~Block)

          # Matrix for bar_h
          crM <- H.BAR(P1, P2)
          # colnames(crM) <- "h.bar"

          # Matrix for nu.i
          Z <- VEi(P1, P2)
          # nams <- paste("ve_", levels(P1)[1:(length(levels(P1))-1)], sep="")
          # colnames(Z) <- c(nams)

          # Matrix for h.i
          H <- Hi(P1, P2)


          # Matrix for sca
          SCA <- SCA(P1, P2)
          # colnames(SCA) <- paste("sca_", colnames(SCA), sep = "")

          # Building incidence matrix (0:5)
          X <- cbind(X, crM, Z, H, SCA)
          groups <- c(groups, seq(nGroups+1, nGroups+4, 1))
          reps <- c(reps,  1 ,length(Z[1,])
                             ,length(H[1, ])
                             ,length(SCA[1,]))
          levs <- rep(groups, reps)
          attr(X, "assign") <- levs
          namEffs <- c(namEffs, "h.bar", "Variety", "h.i", "SCA",
                                     "Residuals")
          attr(X, "namEff") <- namEffs

        } else if(fct == "GE2r"){
          # GE2r - With reciprocals ####################
          # 23/03/2020

          #B <- matBlock(~Block)

          # Matrix for bar_h
          crM <- H.BAR(P1, P2)
          # colnames(crM) <- "h.bar"

          # # Matrix for crosses
          # slM <- H.BAR(crosses)
          # colnames(slM) <- "Selfs"

          Z <- VEi(P1, P2)
          # nams <- paste("ve_", levels(P1)[1:(length(levels(P1))-1)], sep="")
          # colnames(Z) <- c(nams)

          H <- Hi(P1, P2)
          # nams <- paste("h_", levels(P1)[1:(length(levels(P1))-1)], sep="")
          # colnames(H) <- c(nams)

          # Matrix for sca
          SCA <- SCA(P1, P2)
          # colnames(SCA) <- paste("sca_", colnames(SCA), sep = "")

          rec <- REC(P1, P2)
          # colnames(rec) <- paste("rec_", colnames(rec), sep = "")

          # Building incidence matrix (0:6)
          X <- cbind(X, crM, Z, H, SCA, rec)
          groups <- c(groups, seq(nGroups+1, nGroups+5, 1))
          reps <- c(reps,  1 ,length(Z[1,])
                             ,length(H[1, ])
                             ,length(SCA[1,]),
                              length(rec[1,]))
          levs <- rep(groups, reps)
          attr(X, "assign") <- levs
          namEffs <- c(namEffs, "h.bar", "Variety", "h.i", "SCA", "Reciprocals",
                                     "Residuals")
          attr(X, "namEff") <- namEffs

        } else if(fct == "GE3"){
          # GE3 - Senza reciproci ###############################################
          # 23/03/2020
          crM <- H.BAR(P1, P2)
          H <- SP(P1, P2)
          Z <- GCAC(P1, P2)
          SCA <- SCA(P1, P2)

          # Building incidence matrix (0:5)
          X <- cbind(X, crM, H, Z, SCA)
          groups <- c(groups, seq(nGroups+1, nGroups+4, 1))
          reps <- c(reps,  1 ,length(H[1,])
                             ,length(Z[1, ])
                             ,length(SCA[1,]))
          levs <- rep(groups, reps)
          attr(X, "assign") <- levs
          namEffs <- c(namEffs, "h.bar",
                                 "Selfed parents",
                       "gcac", "SCA", "Residuals")
          attr(X, "namEff") <- namEffs

        } else if(fct == "GE3r"){
          # GE3r - Con reciproci ###############################################
          # 23/03/2020

          # Matrix for crosses
          #crM <- matrix(crosses, n, 1)
          crM <- H.BAR(P1, P2)
          # colnames(crM) <- "h.bar"

          H <- SP(P1, P2)
          # nams <- paste("sp_", levels(P1)[1:(length(levels(P1))-1)], sep="")
          # colnames(H) <- c(nams)

          Z <- GCAC(P1, P2)
          # nams <- paste("gcac_", levels(P1)[1:(length(levels(P1))-1)], sep="")
          # colnames(Z) <- c(nams)

          # Matrix for sca
          SCA <- SCA(P1, P2)
          # colnames(SCA) <- paste("sca_", colnames(SCA), sep = "")

          rec <- REC(P1, P2)
          #  colnames(rec) <- paste("rec_", colnames(rec), sep = "")

          # Building incidence matrix (0:6)
          X <- cbind(X, crM, H, Z, SCA, rec)
          groups <- c(groups, seq(nGroups+1, nGroups+5, 1))
          reps <- c(reps,  1 ,length(H[1,])
                             ,length(Z[1, ])
                             ,length(SCA[1,]),
                    length(rec[1,]))
          levs <- rep(groups, reps)
          attr(X, "assign") <- levs
          namEffs <- c(namEffs, "h.bar",
                                 "Selfed parents", "gcac",
                                 "SCA", "Reciprocals",
                                     "Residuals")
          attr(X, "namEff") <- namEffs

        }else{
             stop("Model not yet implemented")
        }
      } else {
        # GE Data ####################################
        # Creazione matrice incidenza
        # effetti genetici can be crossed or nested
        # Nested is the rule for fitting, but crossed are
        # necessary for ANOVA
        X <- model.matrixDiallel.MET(Par1, Par2, Block, Env ,
                                    fct, type = type)

      }
    }
  return(X)
}

model.matrixDiallel.MET <- function(Par1, Par2, Block, Env ,
                                    fct, type = "crossed"){

  if(type != "crossed" & type != "nested")
    stop("'Incidence matrices 'Type' can only be 'nested' ore 'crossed'")

  if(type == "crossed"){
      # Effetti genetici crossed
      n <- length(Par1)
      P1 <- factor(as.character(Par1))
      P2 <- factor(as.character(Par2))
      nGroups <- 0
      groups <- c(nGroups)
      Env <- factor(Env)
      contrasts(Env) <- c("contr.sum")
      EnvMat <- model.matrix(~ Env)

      if(!is.null(Block)) {
        Block <- factor(Block)
        contrasts(Block) <- c("contr.sum")
        X <- model.matrix(~ Env/Block)
        asgn1 <- attr(X, "assign")
        nGroups <- 2
        groups <- 0:2
        namEffs <- c("Intercept", "Env", "Env/Block")
      } else {
        X <- EnvMat
        asgn1 <- attr(X, "assign")
        nGroups <- 1
        groups <- 0:1
        namEffs <- c("Intercept", "Env")
      }
      EnvMat <- as.matrix(EnvMat[,-1])

      if(fct == "HAYMAN1"){
        # HAYMAN1 - con tSCA #############################
        # 6/04/2020
        Z <- GCA(P1, P2)
        SCA <- tSCA(P1, P2)
        RGCA <- RGCA(P1, P2)
        rec <- RSCA(P1, P2)
        Zenv <- int.matrix(Z, EnvMat)
        SCAenv <- int.matrix(SCA, EnvMat)
        RGCAenv <- int.matrix(RGCA, EnvMat)
        RSCAenv <- int.matrix(rec, EnvMat)

        X <- cbind(X, Z, SCA, RGCA, rec, Zenv, SCAenv, RGCAenv, RSCAenv)
        groups <- c(seq(nGroups+1, nGroups+8, 1))
        reps <- c(length(Z[1,]), length(SCA[1,])
                                ,length(RGCA[1,])
                                ,length(rec[1,])
                                ,length(Zenv[1,])
                                ,length(SCAenv[1,])
                  ,length(RGCAenv[1,])
                  ,length(RSCAenv[1,]))
        levs <- rep(groups, reps)
        attr(X, "assign") <- c(asgn1, levs)
        namEffs <- c(namEffs, "GCA","tSCA", "RGCA", "RSCA",
                              "GCA:Env", "tSCA:Env", "RGCA:Env", "RSCA:Env",
                                   "Residuals")
        attr(X, "namEff") <- namEffs

      } else if(fct == "HAYMAN2"){
        # HAYMAN2 - SCA decomposta ###########
        # 23/03/2020
       crM <- MDD(P1, P2)
       Z <- GCA(P1, P2)
       H <- DD(P1, P2)
       SCA <- SCA(P1, P2)
       RGCA <- RGCA(P1, P2)
       rec <- RSCA(P1, P2)
       crMenv <- int.matrix(crM, EnvMat)
       Zenv <- int.matrix(Z, EnvMat)
       Henv <- int.matrix(H, EnvMat)
       SCAenv <- int.matrix(SCA, EnvMat)
       RGCAenv <- int.matrix(RGCA, EnvMat)
       RSCAenv <- int.matrix(rec, EnvMat)

       # Building incidence matrix (0:7)
       X <- cbind(X, crM, Z, H, SCA, RGCA, rec, crMenv, Zenv, Henv,
                  SCAenv, RGCAenv, RSCAenv)
       groups <- c(seq(nGroups+1, nGroups+12, 1))
       reps <- c(length(crM[1,]), length(Z[1,]),
                 length(H[1,]), length(SCA[1,]),
                 length(RGCA[1,]), length(rec[1,]),
                 length(crMenv[1,]), length(Zenv[1,]),
                 length(Henv[1,]), length(SCAenv[1,]),
                 length(RGCAenv[1,]),length(RSCAenv[1,]))
       levs <- rep(groups, reps)
       attr(X, "assign") <- c(asgn1, levs)
       namEffs <- c(namEffs, "MDD", "GCA", "DD", "SCA",
                     "RGCA", "RSCA", "MDD:Env", "GCA:Env", "DD:Env",
                     "SCA:Env", "RGCA:Env", "RSCA:Env", "Residuals")
       attr(X, "namEff") <- namEffs

      } else if(fct == "GRIFFING1"){
        # GRIFFING 1 - Reciprocal effects #######################
        Z <- GCA(P1, P2)
        SCA <- tSCA(P1, P2)
        rec <- REC(P1, P2)
        Zenv <- int.matrix(Z, EnvMat)
        SCAenv <- int.matrix(SCA, EnvMat)
        recEnv <- int.matrix(rec, EnvMat)

        X <- cbind(X, Z, SCA, rec, Zenv, SCAenv, recEnv)
        groups <- c(seq(nGroups+1, nGroups+6, 1))
        reps <- c(length(Z[1,]), length(SCA[1,]),
                  length(rec[1,]), length(Zenv[1,]),
                  length(SCAenv[1,]), length(recEnv[1,]))
        levs <- rep(groups, reps)
        attr(X, "assign") <- c(asgn1, levs)
        namEffs <- c(namEffs, "GCA", "tSCA", "Reciprocals",
                     "GCA:Env", "tSCA:Env", "Reciprocals:Env",
                                   "Residuals")
        attr(X, "namEff") <- namEffs

      } else if(fct == "GRIFFING2"){
        # GRIFFING 2 - No reciprocals #######################
        # 23/03/2020
        Z <- GCA(P1, P2)
        SCA <- tSCA(P1, P2)
        Zenv <- int.matrix(Z, EnvMat)
        SCAenv <- int.matrix(SCA, EnvMat)
        X <- cbind(X, Z, SCA, Zenv, SCAenv)
        groups <- c(seq(nGroups+1, nGroups+4, 1))
        reps <- c(length(Z[1,]), length(SCA[1,]),
                  length(Zenv[1,]), length(SCAenv[1,]))
        levs <- rep(groups, reps)
        attr(X, "assign") <- c(asgn1, levs)
        namEffs <- c(namEffs, "GCA", "tSCA", "GCA:Env", "tSCA:Env",
                                   "Residuals")
        attr(X, "namEff") <- namEffs
      } else if(fct == "GRIFFING3"){
        # GRIFFING 3 - Reciprocal effects, no selfs ###################
        Z <- GCA(P1, P2)
        SCA <- SCA(P1, P2) # Corrected on 1/7/21
        rec <- REC(P1, P2) # Corrected on 2/3/21
        Zenv <- int.matrix(Z, EnvMat)
        SCAenv <- int.matrix(SCA, EnvMat)
        recEnv <- int.matrix(rec, EnvMat)
        X <- cbind(X, Z, SCA, rec, Zenv, SCAenv, recEnv)
        groups <- c(seq(nGroups+1, nGroups+6, 1))
        reps <- c(length(Z[1,]), length(SCA[1,]), length(rec[1,]),
                  length(Zenv[1,]), length(SCAenv[1,]), length(recEnv[1,]))
        levs <- rep(groups, reps)
        attr(X, "assign") <- c(asgn1, levs)
        namEffs <- c(namEffs, "GCA", "SCA", "Reciprocals",
                     "GCA:Env", "SCA:Env", "Reciprocals:Env",
                     "Residuals")
        attr(X, "namEff") <- namEffs

      } else if(fct == "GRIFFING4"){
        # GRIFFING 4 - No reciprocals, no selfs #########
        Z <- GCAmis(P1, P2) # Edited on 20/03/23
        SCA <- SCAmis(P1, P2) # Edited on 20/03/23
        Zenv <- int.matrix(Z, EnvMat)
        SCAenv <- int.matrix(SCA, EnvMat)
        X <- cbind(X, Z, SCA, Zenv, SCAenv)
        groups <- c(seq(nGroups+1, nGroups+4, 1))
        reps <- c(length(Z[1,]), length(SCA[1,]),
                  length(Zenv[1,]), length(SCAenv[1,]))
        levs <- rep(groups, reps)
        attr(X, "assign") <- c(asgn1, levs)
        namEffs <- c(namEffs, "GCA", "SCA", "GCA:Env", "SCA:Env",
                     "Residuals")
        attr(X, "namEff") <- namEffs

      } else if(fct == "GE2"){
        # GE2 - Senza reciproci ####################
        # 23/03/2020
        crM <- H.BAR(P1, P2)
        Z <- VEi(P1, P2)
        H <- Hi(P1, P2)
        SCA <- SCA(P1, P2)
        crMenv <- int.matrix(crM, EnvMat)
        Zenv <- int.matrix(Z, EnvMat)
        Henv <- int.matrix(H, EnvMat)
        SCAenv <- int.matrix(SCA, EnvMat)
        X <- cbind(X, crM, Z, H, SCA, crMenv, Zenv, Henv, SCAenv)
        groups <- c(seq(nGroups+1, nGroups+8, 1))
        reps <- c(1, length(Z[1,]) ,length(H[1, ]),length(SCA[1,]),
                  length(crMenv[1,]) ,length(Zenv[1,]),
                  length(Henv[1, ]),length(SCAenv[1,]))
        levs <- rep(groups, reps)
        attr(X, "assign") <- c(asgn1, levs)
        namEffs <- c(namEffs, "h.bar", "Variety", "h.i", "SCA",
                     "h.bar:Env", "Variety:Env", "h.i:Env", "SCA:Env",
                                   "Residuals")
        attr(X, "namEff") <- namEffs

      } else if(fct == "GE2r"){
        # GE2r - With reciprocals ####################
        # 23/03/2020
        crM <- H.BAR(P1, P2)
        Z <- VEi(P1, P2)
        H <- Hi(P1, P2)
        SCA <- SCA(P1, P2)
        rec <- REC(P1, P2)
        crMenv <- int.matrix(crM, EnvMat)
        Zenv <- int.matrix(Z, EnvMat)
        Henv <- int.matrix(H, EnvMat)
        SCAenv <- int.matrix(SCA, EnvMat)
        recEnv <- int.matrix(rec, EnvMat)
        X <- cbind(X, crM, Z, H, SCA, rec, crMenv, Zenv, Henv, SCAenv,
                   recEnv)
        groups <- c(seq(nGroups+1, nGroups+10, 1))
        reps <- c(1, length(Z[1,]) ,length(H[1, ]),length(SCA[1,]),
                  length(rec[1,]),
                  length(crMenv[1,]) ,length(Zenv[1,]),
                  length(Henv[1, ]),length(SCAenv[1,]),
                  length(recEnv[1,]))
        levs <- rep(groups, reps)
        attr(X, "assign") <- c(asgn1, levs)
        namEffs <- c(namEffs, "h.bar", "Variety", "h.i", "SCA", "Reciprocal",
                     "h.bar:Env", "Variety:Env", "h.i:Env", "SCA:Env",
                     "Reciprocal:Env", "Residuals")
        attr(X, "namEff") <- namEffs

      } else if(fct == "GE3"){
        # GE3 - Senza reciproci ##############################
        # 23/03/2020
        crM <- H.BAR(P1, P2)
        H <- SP(P1, P2)
        Z <- GCAC(P1, P2)
        SCA <- SCA(P1, P2)
        crMenv <- int.matrix(crM, EnvMat)
        Henv <- int.matrix(H, EnvMat)
        Zenv <- int.matrix(Z, EnvMat)
        SCAenv <- int.matrix(SCA, EnvMat)
        X <- cbind(X, crM, H, Z, SCA, crMenv, Henv, Zenv, SCAenv)
        groups <- c(seq(nGroups+1, nGroups+8, 1))
        reps <- c(1 ,length(H[1,]), length(Z[1, ]), length(SCA[1,]),
                  length(crMenv[1,]), length(Henv[1,]),
                  length(Zenv[1, ]), length(SCAenv[1,]))
        levs <- rep(groups, reps)
        attr(X, "assign") <- c(asgn1, levs)
        namEffs <- c(namEffs, "h.bar", "Selfed parents", "gcac", "SCA",
                     "h.bar:Env", "Selfed parents:Env", "gcac:Env",
                     "SCA:Env", "Residuals")
        attr(X, "namEff") <- namEffs

      } else if(fct == "GE3r"){
      # GE3r - Con reciproci ###############################################
      # 23/03/2020
      crM <- H.BAR(P1, P2)
      H <- SP(P1, P2)
      Z <- GCAC(P1, P2)
      SCA <- SCA(P1, P2)
      rec <- REC(P1, P2)
      crMenv <- int.matrix(crM, EnvMat)
      Henv <- int.matrix(H, EnvMat)
      Zenv <- int.matrix(Z, EnvMat)
      SCAenv <- int.matrix(SCA, EnvMat)
      recEnv <- int.matrix(rec, EnvMat)
      X <- cbind(X, crM, H, Z, SCA, rec,
                 crMenv, Henv, Zenv, SCAenv, recEnv)
      groups <- c(seq(nGroups+1, nGroups+10, 1))
      reps <- c(1, length(H[1,]), length(Z[1, ]), length(SCA[1,]),
                length(rec[1,]),
                length(crMenv[1,]), length(Henv[1,]),
                length(Zenv[1, ]), length(SCAenv[1,]),
                length(recEnv[1,]))
      levs <- rep(groups, reps)
      attr(X, "assign") <- c(asgn1, levs)
      namEffs <- c(namEffs, "h.bar", "Selfed parents", "gcac", "SCA",
                   "Reciprocal",
                   "h.bar:Env", "Selfed parents:Env", "gcac:Env",
                   "SCA:Env", "Reciprocal:Env", "Residuals")
      attr(X, "namEff") <- namEffs

      }else{
        stop("Model not yet implemented")
      }
      } else {
      # Effetti genetici nested (normal)
      # Par1 <- P1
      # Par2 <- P2
      Env <- factor(Env)
      if(!is.null(Block)){
        Block <- factor(Block)
        datasetS <- data.frame(Id = 1:length(Par1), Env, Block, Par1, Par2)
        datasetS <- datasetS[order(datasetS$Env, datasetS$Par1,
                     datasetS$Par2, datasetS$Block), ]
        matsOr <- plyr::dlply(datasetS, c("Env"), function(df){
                model.matrixDiallel(~ df$Par1 + df$Par2, df$Block,
                    fct = fct)})
      } else {
        datasetS <- data.frame(Id = 1:length(Par1), Env, Par1, Par2)
        datasetS <- datasetS[order(datasetS$Env, datasetS$Par1,
                     datasetS$Par2), ]
        matsOr <- plyr::dlply(datasetS, c("Env"), function(df){
                model.matrixDiallel(~ df$Par1 + df$Par2, fct = fct)})
      }

      mats <- matsOr
      mats <- lapply(mats, function(x) x[, -1])
      for(i in 1:length(levels(datasetS$Env))) colnames(mats[[i]]) <- paste(colnames(mats[[i]]), names(mats)[i], sep = ":")
      colNames <- unlist(lapply(mats, colnames))
      mats <- blockMatrixDiagonal(mats)
      colnames(mats) <- colNames
      mats2 <- model.matrix(~ Env - 1, data = datasetS)
      X <- cbind(mats2, mats)
      X <- X[order(datasetS$Id), ]

      # Creating the submatrices
      asgnList <- lapply(matsOr, function(x) attr(x, "assign"))
      asgnList <- lapply(asgnList, function(x) unlist(x)[-1])
      addVal <- max(unlist(asgnList[1]))
      asgn <- c(unlist(asgnList[1]),unlist(lapply(asgnList[-1], function(x) unlist(x) + addVal)) )
      asgn <- as.numeric(c(rep(0, length(levels(datasetS$Env))), asgn))
      attr(X, "assign") <- asgn
      attr(X, "namEff") <- as.character( unlist( lapply(matsOr, function(x) attr(x, "namEff"))[1] ) )
      # asgn2 <- c(unlist(asgnList[1]),unlist(lapply(asgnList[-1], function(x) unlist(x))) )
      # asgn2 <- as.numeric(c(rep(0, length(levels(datasetS$Env))), asgn2))
      # attr(X, "assign2") <- asgn2
      }
  return(X)
  }

blockMatrixDiagonal<-function(matList){
  dimensionsRow <- sapply(matList, FUN=function(x) dim(x)[1])
  dimensionsCol <- sapply(matList, FUN=function(x) dim(x)[2])

  finalDimensionRow <- sum(dimensionsRow)
  finalDimensionCol <- sum(dimensionsCol)
  finalMatrix<-matrix(0, nrow=finalDimensionRow, ncol=finalDimensionCol)
  indexRow <- 1; indexCol <- 1
  for(k in 1:length(dimensionsRow)){
    #print(paste(k, indexRow, (indexRow + dimensionsRow[k]-1), sep="-"))

    finalMatrix[indexRow:(indexRow + dimensionsRow[k]-1),indexCol:(indexCol+dimensionsCol[k]-1)] <- matList[[k]]
    indexRow <- indexRow + dimensionsRow[k]
    indexCol <- indexCol + dimensionsCol[k]
    }
    finalMatrix
}

matBlock <- function(formula){
  cl <- match.call()
  mf <- match.call(expand.dots = FALSE)
  m <- match(c("formula"), names(mf), 0L)
  mf <- mf[c(1L, m)]
  mf$drop.unused.levels <- TRUE
  mf[[1L]] <- quote(stats::model.frame)
  mf <- eval(mf, parent.frame())
  mt <- attr(mf, "terms")
  nameFac <- attr(mt, "term.labels")
  fac <- factor( mf[[1]])
  n <- length(fac)
  contrasts(fac) <- c("contr.sum")
  B <-  model.matrix(~fac)
  B <- B[,-1]
  if(is.vector(B) == T) B <- matrix(B, n, 1)
  colnames(B) <- paste(nameFac, levels(fac)[-length(levels(fac))], sep = "")
  B
  }


GCA <- function(P1, P2, type = "fix", data = NULL){
  # This is modified to work with mating design 4
  if(!is.null(data)){
    P1Name <- deparse(substitute(P1))
    P2Name <- deparse(substitute(P2))
    P1 <- data[[P1Name]]
    P2 <- data[[P2Name]]
  }
  if(type == "random"){
      Z <- sommer::overlay(P1, P2, sparse = F)
  } else {
  P1 <- factor(as.character(P1))
  P2 <- factor(as.character(P2))
  levs <- c(levels(P1), levels(P2))
  levs <- levels(factor(levs, levels = unique(levs)))
  Z1n <- factor(P1, levels = levs, ordered = T)
  Z2n <- factor(P2, levels = levs)
  contrasts(Z1n) <- c("contr.sum")
  contrasts(Z2n) <- c("contr.sum")
  Z1 <- model.matrix(~ Z1n)
  Z2 <- model.matrix(~ Z2n)
  Z <- (Z1 + Z2)
  Z <- Z[,-1]
  nams <- paste("g_", levs[1:(length(levs)-1)], sep="")
  colnames(Z) <- c(nams)
  }
  Z
}

VEi <- function(P1, P2, type = "fix", data = NULL){
    if(!is.null(data)){
    P1Name <- deparse(substitute(P1))
    P2Name <- deparse(substitute(P2))
    P1 <- data[[P1Name]]
    P2 <- data[[P2Name]]
    }
  if(type == "random"){
    Z <- GCA(P1, P2, type = "random")
    # Z <- Z/2
    return(Z)
  } else {

  # For GE2 models
  P1 <- factor(as.character(P1))
  P2 <- factor(as.character(P2))
  contrasts(P1) <- c("contr.sum")
  contrasts(P2) <- c("contr.sum")
  Z1 <- model.matrix(~P1)
  Z2 <- model.matrix(~P2)
  Z <- (Z1 + Z2)/2
  Z <- Z[,-1]
  nams <- paste("v_", levels(P1)[1:(length(levels(P1))-1)], sep="")
  colnames(Z) <- c(nams)
  Z }
}

SP <- function(P1, P2, type = "fix", data = NULL){
    if(!is.null(data)){
    P1Name <- deparse(substitute(P1))
    P2Name <- deparse(substitute(P2))
    P1 <- data[[P1Name]]
    P2 <- data[[P2Name]]
    }
  if(type == "random"){
    crosses <- ifelse(P1 == P2, 0, 1)
    Z <- GCA(P1, P2, type = "random") * crosses
    #colnames(Z) <- sub("combination", "", colnames(Z))
    Z <- Z[, apply(Z, 2, function(x) !all(x==0))]
    return(Z)
  } else {
  # For GE3 models
  P1 <- factor(as.character(P1))
  P2 <- factor(as.character(P2))
  P1c <- as.character(P1)
  P2c <- as.character(P2)
  selfs <- ifelse(P1c == P2c, 1, 0)
  contrasts(P1) <- c("contr.sum")
  contrasts(P2) <- c("contr.sum")
  Z1 <- model.matrix(~P1)
  Z2 <- model.matrix(~P2)
  Z <- (Z1 + Z2)/2 * selfs
  Z <- Z[,-1]
  nams <- paste("sp_", levels(P1)[1:(length(levels(P1))-1)], sep="")
  colnames(Z) <- c(nams)
  Z}
}

RGCA <- function(P1, P2, type = "fix", data = NULL){
  if(!is.null(data)){
    P1Name <- deparse(substitute(P1))
    P2Name <- deparse(substitute(P2))
    P1 <- data[[P1Name]]
    P2 <- data[[P2Name]]
  }
    if(type == "random"){
    dr <- ifelse(as.character(P1) < as.character(P2), -1,
              ifelse(as.character(P1) == as.character(P2), 0, 1))
    Z <- GCA(P1, P2, type = "random") * dr
    # colnames(Z) <- sub("combination", "", colnames(Z))
    # Z <- Z[, apply(Z, 2, function(x) !all(x==0))]
    return(Z)
  } else {
  P1 <- factor(as.character(P1))
  P2 <- factor(as.character(P2))
  contrasts(P1) <- c("contr.sum")
  contrasts(P2) <- c("contr.sum")
  # p <- length(levels(P1))
  p <- levels(P1)[length(levels(P1))] #Correction 14/11/20. AO
  P1c <- as.character(P1)
  P2c <- as.character(P2)
  dr <- ifelse(P1c == P2c, 0, ifelse(P1c < P2c, -1, 1))
  Z3 <- model.matrix(~P1 - 1)
  Z4 <- model.matrix(~P2 - 1)
  RGCA <- (Z3 - Z4) #* -dr
  RGCA[P1==p,] <- RGCA[P1==p,] - 1
  RGCA[P2==p,] <- RGCA[P2==p,] + 1
  # RGCA <- RGCA[,-p]
  RGCA <- RGCA[,-length(levels(P1))] ##Correction 14/11/20. AO
  nams <- paste("rg_", levels(P1)[1:length(levels(P1))-1], sep="")
  colnames(RGCA) <- c(nams)
  RGCA }
}

tSCA <- function(P1, P2, type = "fix", data = NULL){
    if(!is.null(data)){
    P1Name <- deparse(substitute(P1))
    P2Name <- deparse(substitute(P2))
    P1 <- data[[P1Name]]
    P2 <- data[[P2Name]]
    }
  if(type == "random"){
    combination <- factor( ifelse(as.character(P1) <= as.character(P2),
                                 paste(P1, P2, sep =""),
                                 paste(P2, P1, sep ="")) )
    Z <- model.matrix(~ combination - 1)
    colnames(Z) <- sub("combination", "", colnames(Z))
    return(Z)
  } else {
  # Matrix tSCA: final version: 30/6/2020
  P1 <- factor(as.character(P1))
  P2 <- factor(as.character(P2))
  P1c <- as.character(P1); P2c <- as.character(P2)

  # Combination
  tmp <- ifelse(P1c < P2c, paste(P1c, P2c, sep =":"),
         paste(P2c, P1c, sep = ":"))
  combination <- factor(tmp) #, levels = unique(tmp))
  combLev <- NA
  mating <- P1:P2
  p <- length(levels(factor(c(levels(P1), levels(P2)) )))
  n <- length(combination)

  # Step 1. gets the parameters to be estimated, removing
  # the unnecessary combinations
  tmp <- sapply(by(P2, P1, function(x) levels(x)), function(x) max(as.character(x)))
  tmp <- ifelse(names(tmp) < tmp, paste(names(tmp), tmp, sep = ":"), paste(tmp, names(tmp), sep = ":"))
  last <- levels(factor(tmp, levels = unique(tmp)))

  levs <- levels(combination)
  idx <- c() # Identifica la posizione degli ultimi livelli
   for(i in 1:length(last)){
       #i <- 2
       y <- which(levs == last[i])
       idx[i] <- y
  }
  levs <- as.character(levs[-idx]) # Esclude gli ultimi livelli per ogni Par1
  SCA <- matrix(0, nrow = n, ncol = length(levs))
  colnames(SCA) <- levs

  # Step 2. Insert 1s for all levels, but the last one
  for(i in 1:length(levs)){
    # i <- 1
    cond <- (combination == colnames(SCA)[i])*1
    SCA[, i] <- cond
   }

  # Step 3. Insert the -1s for the last level. The last level of
  # Par2, within each level of Par1. The last level of Par1
  # requires another step
  for(i in 1:(length(last) - 1)){
     arrival <- last[i]
    tmp <- strsplit(arrival, ":")[[1]]
    revArrival <- paste(rev(tmp), collapse = ":")
    lastEl <- c(arrival, revArrival)
    sel <- sapply(strsplit(colnames(SCA), ":"), function(i) any(i == tmp[1]))
    idx <- sapply(1:length(combination), function(i) any(lastEl == mating[i]))
    SCA[idx, sel] <- -1
  }
  SCA
  # Scrive il self dell'ultimo livello
  SCA[combination == last[p], ] <- 2
  for(i in 1:p) {
    SCA[combination == last[p], colnames(SCA) == paste(levels(P1)[i], levels(P2)[i], sep = ":")] <- 1
    }
  colnames(SCA) <- paste("ts_", colnames(SCA), sep = "")
  row.names(SCA) <- c(1:length(SCA[,1]))
  return(SCA) }
}

SCA <- function(P1, P2, type = "fix", data = NULL){
  # Edited on 10/3/2023
  if(!is.null(data)){
    P1Name <- deparse(substitute(P1))
    P2Name <- deparse(substitute(P2))
    P1 <- data[[P1Name]]
    P2 <- data[[P2Name]]
  }
  if(type == "random"){
    crosses <- ifelse(as.character(P1) == as.character(P2), 0, 1)
    combination <- factor( ifelse(as.character(P1) <= as.character(P2),
                                 paste(P1, P2, sep =""),
                                 paste(P2, P1, sep ="")) )
    Z <- model.matrix(~ combination - 1) * crosses
    colnames(Z) <- sub("combination", "", colnames(Z))
    Z <- Z[, apply(Z, 2, function(x) !all(x==0))]
    return(Z)
  } else {

  # Matrix for SCA in heterosis model Hayman2
  # It is also used where the selfs are not includede
  P1 <- factor(as.character(P1)) #, levels = unique(P1))
  P2 <- factor(as.character(P2)) #, levels = unique(P1)) # Livelli uguali?
  P1c <- as.character(P1); P2c <- as.character(P2)

  # create the combination levels
  tmp <- ifelse(P1c < P2c, paste(P1c, P2c, sep =":"),
         paste(P2c, P1c, sep = ":"))
  combination <- factor(tmp) #, levels = unique(tmp))
  combLev <- NA

  # Create the matings (considers the reciprocals)
  mating <- P1:P2
  p <- length(levels(factor(c(levels(P1), levels(P2)) )))
  n <- length(combination)

  # See whether selfs are included and find the last level for each
  # combination
  selflist <- levels(factor(combination[P1c == P2c]))
  levs <- sort(unique(c(levels(P1), levels(P2))))
  tmp <- paste(levs, max(levs), sep = ":")
  parLevs <- levs
  last <- levels(factor(tmp, levels = unique(tmp)))
  levs <- levels(combination)

  # Cerca la posizione dell'ultimo in ogni gruppo
  idx1 <- c()
  for(i in 1:length(last)){
         y <- which(levs == last[i])
         # print(i); print(length(y))
         if(length(y) != 0) idx1[i] <- y else next
  }

  # cerca la posizione dei selfs, se esistenti
  idx3 <- c()
  for(i in 1:length(selflist)){
          #i <- 2
          y <- which(levs == selflist[i])
          if(length(y) > 0) idx3[i] <- y
  }

  # Definisce i parametr da stimare. Deve rimuovere gli ultimi livelli
  # e i selfs, se esistenti. Deeve anche rimuover l'elemento con parentali
  # (p - 2) e (p - 1)
  idx <- c(idx1, idx3)
  rimossi <- levs[idx]
  levs <- as.character(levs[-idx])
  rimossi <- c(rimossi, levs[length(levs)])
  levs <- levs[-length(levs)] # rimuove l'ultimo

  # Step 1. Create an empty matrix
  SCA <- matrix(0, nrow = n, ncol = length(levs))
  colnames(SCA) <- paste(levs)

  # Step 2. Insert 1s for all the levels, which correspond
  # to estimands
  for(i in 1:length(levs)){
          cond <- (combination == colnames(SCA)[i]) * 1
          SCA[, i] <- cond
  }

  # Step 3. Insert the -1s for the last level of
  # Par2, within each level of Par1. This is only done for Par 1
  # going from 1 to (p - 3), per gli altri ci vuole un altro step
  for(i in 1:(length(last) - 3)){
    arrival <- last[i]
    tmp <- strsplit(arrival, ":")[[1]]
    revArrival <- paste(rev(tmp), collapse = ":")
    lastEl <- c(arrival, revArrival)
    sel <- sapply(strsplit(colnames(SCA), ":"), function(i) any(i == tmp[1]))
    idx <- sapply(1:length(combination), function(i) any(lastEl == mating[i]))
    SCA[idx, sel] <- -1
    # SCA
    }

  # Mancano le combinazioni degli ultimi 3 ibridi
    revParents <- function(x){
        tmp <- strsplit(x, ":")[[1]]
        paste(rev(tmp), collapse = ":")}

    tmp <- seq(p - 2, p, 1)
    tmp <- as.data.frame(combn(tmp, 2))
    # Edited on 10/3/2023, to avoid an error for mating schemes without selfs
    # tmp <- apply(tmp, 2, function(x) paste(levels(P1)[x[1]], levels(P2)[x[2]], sep = ":"))
    tmp <- apply(tmp, 2, function(x) paste(parLevs[x[1]], parLevs[x[2]], sep = ":"))
    tmp2 <- mapply(revParents, tmp)

     # Si occupa del livello P1 = p -2 e P2 = P-1 che deve essere pari
     # all'opposto della somma di tutti gli altri parametri
     SCA[combination == tmp[1], ] <- -1
     SCA[combination == tmp2[1], ] <- -1

     # Si occupa del parametro per (p-2, p), che si ottiene come somma
     # di tutti i parametri i cui parentali non sono uguali a (p - 2)
     tmp3 <- strsplit(tmp[2], ":")[[1]]
     sel <- sapply(strsplit(colnames(SCA), ":"), function(i) !any(i == tmp3[1]))
     SCA[combination == tmp[2], sel] <- 1
     SCA[combination == tmp2[2], sel] <- 1

     # Si occupa del parametro per (p-1, p), che si ottiene come somma
     # di tutti i parametri i cui parentali non sono uguali a (p - 1)
     tmp3 <- strsplit(tmp[3], ":")[[1]]
     sel <- sapply(strsplit(colnames(SCA), ":"), function(i) !any(i == tmp3[1]))
     SCA[combination == tmp[3], sel] <- 1
     SCA[combination == tmp2[3], sel] <- 1
     colnames(SCA) <- paste("s_", colnames(SCA), sep = "")
     SCA
     }
}


# SCA <- function(P1, P2, type = "fix", data = NULL){
#     if(!is.null(data)){
#     P1Name <- deparse(substitute(P1))
#     P2Name <- deparse(substitute(P2))
#     P1 <- data[[P1Name]]
#     P2 <- data[[P2Name]]
#     }
#     if(type == "random"){
#     crosses <- ifelse(P1 == P2, 0, 1)
#     combination <- factor( ifelse(as.character(P1) <= as.character(P2),
#                                  paste(P1, P2, sep =""),
#                                  paste(P2, P1, sep ="")) )
#     Z <- model.matrix(~ combination - 1) * crosses
#     colnames(Z) <- sub("combination", "", colnames(Z))
#     Z <- Z[, apply(Z, 2, function(x) !all(x==0))]
#     return(Z)
#   } else {
#
#   # Matrix for SCA in heterosis model Hayman2
#   P1 <- factor(as.character(P1)) #, levels = unique(P1))
#   P2 <- factor(as.character(P2)) #, levels = unique(P1)) # Livelli uguali?
#   P1c <- as.character(P1); P2c <- as.character(P2)
#
#   # combination
#   tmp <- ifelse(P1c < P2c, paste(P1c, P2c, sep =":"),
#          paste(P2c, P1c, sep = ":"))
#   combination <- factor(tmp) #, levels = unique(tmp))
#
#   combLev <- NA
#
#   mating <- P1:P2
#
#   p <- length(levels(factor(c(levels(P1), levels(P2)) )))
#   n <- length(combination)
#
#   selflist <- levels(factor(combination[P1c == P2c]))
#
#   # See whether selfs are included and find the last level for each P1
#   levs <- sort(unique(c(levels(P1), levels(P2))))
#   # tmp <- sapply(by(P1, P2, function(x) levels(x)), function(x) max(as.character(x)))
#   # tmp <- ifelse(names(tmp) < tmp, paste(names(tmp), tmp, sep = ":"), paste(tmp, names(tmp), sep = ":"))
#   tmp <- paste(levs, max(levs), sep = ":")
#   last <- levels(factor(tmp, levels = unique(tmp)))
#
#   # tmp <- sapply(by(P2, P1, function(x) levels(x)), function(x) sort(as.character(x))[(length(x) - 1)])
#   # tmp <- ifelse(names(tmp) < tmp, paste(names(tmp), tmp, sep = ":"), paste(tmp, names(tmp), sep = ":"))
#   # lastButOne <- levels(factor(tmp, levels = unique(tmp)))
#   #
#   # tmp <- sapply(by(P2, P1, function(x) levels(x)), function(x) sort(as.character(x))[(length(x) - 2)])
#   # tmp <- ifelse(names(tmp) < tmp, paste(names(tmp), tmp, sep = ":"), paste(tmp, names(tmp), sep = ":"))
#   # lastButTwo <- levels(factor(tmp, levels = unique(tmp)))
#
#   levs <- levels(combination)
#   idx1 <- c()
#   for(i in 1:length(last)){ #Indica la posizione dell'ultimo in ogni gruppo
#          y <- which(levs == last[i])
#          # print(i); print(length(y))
#          if(length(y) != 0) idx1[i] <- y else next
#   }
#   # idx2 <- c()
#   # for(i in 1:length(last)){ #Indica il penultimo
#   #         y <- which(levs == lastButOne[i])
#   #         if(length(y) > 0) idx2[i] <- y
#   # }
#   #
#   # idx2b <- c()
#   # for(i in 1:length(last)){ #Indica il terzultimo
#   #         y <- which(levs == lastButTwo[i])
#   #         if(length(y) > 0) idx2b[i] <- y
#   # }
#
#   idx3 <- c()
#   for(i in 1:length(selflist)){ #Indica i selfs
#           #i <- 2
#           y <- which(levs == selflist[i])
#           if(length(y) > 0) idx3[i] <- y
#   }
#   idx <- c(idx1, idx3)
#   rimossi <- levs[idx]
#   levs <- as.character(levs[-idx])
#   rimossi <- c(rimossi, levs[length(levs)])
#   levs <- levs[-length(levs)]
#   SCA <- matrix(0, nrow = n, ncol = length(levs))
#   colnames(SCA) <- paste(levs)
#
#   # Step 2. Insert 1s for all the levels, which are
#   # in the SCA matrix
#   for(i in 1:length(levs)){
#           cond <- (combination == colnames(SCA)[i]) * 1
#           SCA[, i] <- cond
#     }
#
#   # Step 3. Insert the -1s for the last level. The last level of
#   # Par2, within each level of Par1. The last level of Par1
#   # requires another step
#   for(i in 1:(length(last) - 3)){
#     # i <- 1
#     arrival <- last[i]
#     tmp <- strsplit(arrival, ":")[[1]]
#     revArrival <- paste(rev(tmp), collapse = ":")
#     lastEl <- c(arrival, revArrival)
#     sel <- sapply(strsplit(colnames(SCA), ":"), function(i) any(i == tmp[1]))
#     idx <- sapply(1:length(combination), function(i) any(lastEl == mating[i]))
#     SCA[idx, sel] <- -1
#     SCA
#     }
#
#   # Mancano le combinazioni degli ultimi 3 ibridi
#     revParents <- function(x){
#         tmp <- strsplit(x, ":")[[1]]
#         paste(rev(tmp), collapse = ":")}
#
#     tmp <- seq(p - 2, p, 1)
#     tmp <- as.data.frame(combn(tmp, 2))
#     tmp <- apply(tmp, 2, function(x) paste(levels(P1)[x[1]], levels(P2)[x[2]], sep = ":"))
#     tmp2 <- mapply(revParents, tmp)
#
#
#      SCA[combination == tmp[1], ] <- -1
#      SCA[combination == tmp2[1], ] <- -1
#
#      tmp3 <- strsplit(tmp[2], ":")[[1]]
#      sel <- sapply(strsplit(colnames(SCA), ":"), function(i) !any(i == tmp3[1]))
#      SCA[combination == tmp[2], sel] <- 1
#      SCA[combination == tmp2[2], sel] <- 1
#
#      tmp3 <- strsplit(tmp[3], ":")[[1]]
#      sel <- sapply(strsplit(colnames(SCA), ":"), function(i) !any(i == tmp3[1]))
#      SCA[combination == tmp[3], sel] <- 1
#      SCA[combination == tmp2[3], sel] <- 1
#      #colnames(SCA) <- paste("s_", colnames(SCA), sep = "")
#      colnames(SCA) <- paste("s_", colnames(SCA), sep = "")
#      SCA
#      }
# }

# SCA.old <- function(P1, P2, type = "fix", data = NULL){
#     if(!is.null(data)){
#     P1Name <- deparse(substitute(P1))
#     P2Name <- deparse(substitute(P2))
#     P1 <- data[[P1Name]]
#     P2 <- data[[P2Name]]
#     }
#     if(type == "random"){
#     crosses <- ifelse(P1 == P2, 0, 1)
#     combination <- factor( ifelse(as.character(P1) <= as.character(P2),
#                                  paste(P1, P2, sep =""),
#                                  paste(P2, P1, sep ="")) )
#     Z <- model.matrix(~ combination - 1) * crosses
#     colnames(Z) <- sub("combination", "", colnames(Z))
#     Z <- Z[, apply(Z, 2, function(x) !all(x==0))]
#     return(Z)
#   } else {
#
#   # Matrix for SCA in heterosis model Hayman2
#   # P1 <- df$Par1; P2 <- df$Par2
#   P1 <- factor(as.character(P1))
#   P2 <- factor(as.character(P2))
#   P1n <- as.numeric(P1); P2n <- as.numeric(P2)
#   P1c <- as.character(P1); P2c <- as.character(P2)
#   combination <- factor(apply(cbind(P1n*10 + P2n, P2n * 10 + P1n), 1, min))
#   combLev <- factor( ifelse(P1c < P2c, paste(P1c, P2c, sep = ":"), paste(P2c, P1c, sep = ":") ) )
#   mating <- factor(P1n*10 + P2n)
#   p <- length(levels(factor(c(levels(P1), levels(P2)) )))
#   n <- length(combination)
#   last <- seq(10, p*10, 10) + p
#   levs <- as.numeric(levels(combination))
#   idx1 <- c()
#   for(i in 1:length(last)){ #Indica l'ultimo
#          y <- which(levs == last[i])
#          idx1[i] <- y
#   }
#
#   idx2 <- c()
#   for(i in 1:length(last)){ #Indica il penultimo
#           y <- which(levs == (last[i] - 1))
#           if(length(y) > 0) idx2[i] <- y
#   }
#   selflist <- as.numeric(levels(factor(combination[P1n == P2n])))
#   idx3 <- c()
#   for(i in 1:length(selflist)){ #Indica il penultimo
#           #i <- 2
#           y <- which(levs == selflist[i])
#           if(length(y) > 0) idx3[i] <- y
#   }
#   idx <- c(idx1, idx3)
#   rimossi <- levs[idx]
#   levs <- as.character(levs[-idx])
#   rimossi <- c(rimossi, levs[length(levs)])
#   levs <- levs[-length(levs)]
#   SCA <- matrix(0, nrow = n, ncol = length(levs))
#   colnames(SCA) <- paste(levs)
#   #colnames(SCA)
#   colNamsOrd <- levels(combLev)[-idx][-length(levels(combLev)[-idx])]
#
#     # Step 2. Insert 1s for all the levels, which are
#     # in the SCA matrix
#     for(i in 1:length(levs)){
#           cond <- (combination == colnames(SCA)[i])*1
#           SCA[, i] <- cond
#     }
#     # Step 3. Insert the -1s for the last level. The last level of
#     # Par2, within each level of Par1. The last level of Par1
#     # requires another step
#     for(i in 1:(length(last) - 1)){
#         start <- ceiling(ifelse(i == 1, 1, last[i-1])/10) * 10 +1
#         arrival <- last[i]
#         sel <- seq(start, arrival, 1)
#         tmp <- as.character( sel[1:i] ) # Se necessario, inverte i reciproci
#         splits <- strsplit(tmp, "")
#         reversed <- lapply(splits, rev)
#         tmp <- as.character(lapply(reversed, paste, collapse = ""))
#         sel[1:i] <- as.numeric(tmp)
#         #sel
#         idx <- c() # Identifica la posizione di quelli da scrivere
#         for(j in 1:length(sel)){
#              #i <- 7
#              y <- which(levs == sel[j])
#              if(length(y) > 0) idx[j] <- y
#         }
#         idx
#         SCA[,idx]
#         idx1 <- last[i]
#         SCA[combination == idx1, idx] <- -1
#     }
#      # SCA
#      # Mancano le combinazioni degli ultimi 3 ibridi
#      # 67, 68, 76, 78, 86, 87
#      tmp <- seq(p-2, p, 1)
#      tmp <- as.data.frame(combn(tmp, 2))
#      tmp <- apply(tmp, 2, function(x) paste(x[1], x[2], sep = ""))
#      SCA[combination == tmp[1], ] <- -1
#      SCA[combination == tmp[2], ] <- SCA[combination == tmp[2], ] + 1
#      SCA[combination == tmp[3], ] <- SCA[combination == tmp[3], ] + 1
#      #colnames(SCA) <- paste("s_", colnames(SCA), sep = "")
#      colnames(SCA) <- paste("s_", colNamsOrd, sep = "")
#      SCA }
# }

SCA.G3 <- function(P1, P2, type = "fix", data = NULL){
  # tSCA effect in absence of selfed parents (only crosses)
  # and reciprocals
  # It is superseeded!!!!!!!!!
  if(!is.null(data)){
    P1Name <- deparse(substitute(P1))
    P2Name <- deparse(substitute(P2))
    P1 <- data[[P1Name]]
    P2 <- data[[P2Name]]
  }
  # Matrix for SCA in heterosis model Hayman2
  # P1 <- df$Par1; P2 <- df$Par2
  P1 <- factor(as.character(P1))
  P2 <- factor(as.character(P2))
  P1n <- as.numeric(P1); P2n <- as.numeric(P2)
  P1c <- as.character(P1); P2c <- as.character(P2)
  combination <- factor(apply(cbind(P1n*10 + P2n, P2n * 10 + P1n), 1, min))
  combLev <- factor( ifelse(P1c < P2c, paste(P1c, P2c, sep = ":"), paste(P2c, P1c, sep = ":") ) )
  mating <- factor(P1n*10 + P2n)
  p <- length(levels(factor(c(levels(P1), levels(P2)) )))
  n <- length(combination)
  last <- seq(10, (p-1)*10, 10) + p
  levs <- as.numeric(levels(combination))
  idx1 <- c()
  for(i in 1:length(last)){ #Indica l'ultimo
    y <- which(levs == last[i])
    idx1[i] <- y
  }
  idx2 <- c()
  for(i in 1:length(last)){ #Indica il penultimo
    y <- which(levs == (last[i] - 1))
    if(length(y) > 0) idx2[i] <- y
  }
  selflist <- as.numeric(levels(factor(combination[P1n == P2n])))
  idx3 <- c()
  for(i in 1:length(selflist)){ #Indica il penultimo
    #i <- 2
    y <- which(levs == selflist[i])
    if(length(y) > 0) idx3[i] <- y
  }

  idx <- c(idx1, idx3)
  rimossi <- levs[idx]
  levs <- as.character(levs[-idx])
  rimossi <- c(rimossi, levs[length(levs)])
  levs <- levs[-length(levs)]
  SCA <- matrix(0, nrow = n, ncol = length(levs))
  colnames(SCA) <- paste(levs)
  #colnames(SCA)
  colNamsOrd <- levels(combLev)[-idx][-length(levels(combLev)[-idx])]

  # Step 2. Insert 1s for all the levels, which are
  # in the SCA matrix
  for(i in 1:length(levs)){
    cond <- (combination == colnames(SCA)[i])*1
    SCA[, i] <- cond
  }
  # Step 3. Insert the -1s for the last level. The last level of
  # Par2, within each level of Par1. The last level of Par1
  # requires another step
  for(i in 1:(length(last) - 1)){
    start <- ceiling(ifelse(i == 1, 1, last[i-1])/10) * 10 +1
    arrival <- last[i]
    sel <- seq(start, arrival, 1)
    tmp <- as.character( sel[1:i] ) # Se necessario, inverte i reciproci
    splits <- strsplit(tmp, "")
    reversed <- lapply(splits, rev)
    tmp <- as.character(lapply(reversed, paste, collapse = ""))
    sel[1:i] <- as.numeric(tmp)
    #sel
    idx <- c() # Identifica la posizione di quelli da scrivere
    for(j in 1:length(sel)){
      #i <- 7
      y <- which(levs == sel[j])
      if(length(y) > 0) idx[j] <- y
    }
    idx
    SCA[,idx]
    idx1 <- last[i]
    SCA[combination == idx1, idx] <- -1
  }
  # SCA
  # Mancano le combinazioni degli ultimi 3 ibridi
  # 67, 68, 76, 78, 86, 87
  tmp <- seq(p-2, p, 1)
  tmp <- as.data.frame(combn(tmp, 2))
  tmp <- apply(tmp, 2, function(x) paste(x[1], x[2], sep = ""))
  SCA[combination == tmp[1], ] <- -1
  SCA[combination == tmp[2], ] <- SCA[combination == tmp[2], ] + 1
  SCA[combination == tmp[3], ] <- SCA[combination == tmp[3], ] + 1
  #colnames(SCA) <- paste("s_", colnames(SCA), sep = "")
  colnames(SCA) <- paste("s_", colNamsOrd, sep = "")
  SCA
}

SCA.GE <- function(P1, P2, type = "fix", data = NULL){
    if(!is.null(data)){
    P1Name <- deparse(substitute(P1))
    P2Name <- deparse(substitute(P2))
    P1 <- data[[P1Name]]
    P2 <- data[[P2Name]]
    }
  # SCA for GE models
  P1 <- factor(as.character(P1))
  P2 <- factor(as.character(P2))
  P1n <- as.numeric(P1); P2n <- as.numeric(P2)
  combination <- factor(apply(cbind(P1n*10 + P2n, P2n * 10 + P1n), 1, min))
  mating <- factor(P1n*10 + P2n)
  p <- length(levels(factor(c(levels(P1), levels(P2)) )))
  n <- length(combination)
  last <- seq(10, p*10, 10) + p
  levs <- as.numeric(levels(combination))
  idx1 <- c()
   for(i in 1:length(last)){ #Indica l'ultimo
       #i <- 2
       y <- which(levs == last[i])
       idx1[i] <- y
   }
  idx2 <- c()
   for(i in 1:length(last)){ #Indica il penultimo
       #i <- 2
       y <- which(levs == (last[i] - 1))
       if(length(y) > 0) idx2[i] <- y
   }
  selflist <- as.numeric(levels(factor(combination[P1n == P2n])))
  idx3 <- c()
   for(i in 1:length(selflist)){ #Indica il penultimo
       #i <- 2
       y <- which(levs == selflist[i])
       if(length(y) > 0) idx3[i] <- y
   }

  idx <- c(idx1, idx3)
  rimossi <- levs[idx]
  levs <- as.character(levs[-idx])
  rimossi <- c(rimossi, levs[length(levs)])
  levs <- levs[-length(levs)]
  SCA <- matrix(0, nrow = n, ncol = length(levs))
  colnames(SCA) <- paste(levs) #paste("s_", levs, sep = "")
  # Step 2. Insert 1s for all the levels, which are
  # in the SCA matrix
  for(i in 1:length(levs)){
       cond <- (combination == colnames(SCA)[i])*1
       SCA[, i] <- cond
  }
  # Step 3. Insert the -1s for the last level. The last level of
  # Par2, within each level of Par1. The last level of Par1
  # requires another step
  for(i in 1:(length(last) - 1)){
      start <- ceiling(ifelse(i == 1, 1, last[i-1])/10) * 10 +1
      arrival <- last[i]
      sel <- seq(start, arrival, 1)
      tmp <- as.character( sel[1:i] ) # Se necessario, inverte i reciproci
      splits <- strsplit(tmp, "")
      reversed <- lapply(splits, rev)
      tmp <- as.character(lapply(reversed, paste, collapse = ""))
      sel[1:i] <- as.numeric(tmp)
      #sel
      idx <- c() # Identifica la posizione di quelli da scrivere
      for(j in 1:length(sel)){
           #i <- 7
           y <- which(levs == sel[j])
           if(length(y) > 0) idx[j] <- y
      }
      #idx
      SCA[,idx]
      idx1 <- last[i]
      SCA[combination == idx1, idx] <- -1
  }
  tmp <- seq(p-2, p, 1)
  tmp <- as.data.frame(combn(tmp, 2))
  tmp <- apply(tmp, 2, function(x) paste(x[1], x[2], sep = ""))
  SCA[combination == tmp[1], ] <- -1
  SCA[combination == tmp[2], ] <- SCA[combination == tmp[2], ] + 1
  SCA[combination == tmp[3], ] <- SCA[combination == tmp[3], ] + 1
  colnames(SCA) <- paste("s_", colnames(SCA), sep = "")
  SCA

}

RSCA <- function(P1, P2, type = "fix", data = NULL){
    if(!is.null(data)){
    P1Name <- deparse(substitute(P1))
    P2Name <- deparse(substitute(P2))
    P1 <- data[[P1Name]]
    P2 <- data[[P2Name]]
  }
    if(type == "random"){
    dr <- ifelse(as.character(P1) < as.character(P2), -1,
              ifelse(as.character(P1) == as.character(P2), 0, 1))

    Z <- tSCA(P1, P2, type = "random") * dr
    # colnames(Z) <- sub("combination", "", colnames(Z))
    Z <- Z[, apply(Z, 2, function(x) !all(x==0))]
    return(Z)
  } else {

  # Derive the dummies and other infos
  # P1 <- df$Par1; P2 <- df$Par2
  P1 <- factor(as.character(P1))
  P2 <- factor(as.character(P2))
  P1c <- as.character(P1); P2c <- as.character(P2)
  n <- length(P1)
  p <- length(levels(P1))

  # P1n <- as.numeric(P1); P2n <- as.numeric(P2) # Problematico
  # mate <- factor(P1n*10 + P2n)
  mate <- P1:P2
  # combination <- factor(apply(cbind(P1n*10 + P2n, P2n * 10 + P1n), 1, min))
  # combLev <- factor( ifelse(P1c < P2c, paste(P1c, P2c, sep = ":"), paste(P2c, P1c, sep = ":") ) )
  tmp <- ifelse(P1c < P2c, paste(P1c, P2c, sep =":"),
         paste(P2c, P1c, sep = ":"))
  combination <- factor(tmp) #, levels = unique(tmp))
  combLev <- NA

  # Empty matrix
  rec <- matrix(0, nrow = n, ncol = (p - 1)*(p - 2)/2 )
  cont <- 0
  nams <- c(); nams2 <- c()

  # Select the names of columns
  for(i in 1:(p-2)) { for(j in (i + 1):(p-1)){
     cont <- cont + 1
     nams[cont] <- paste(i, j, sep="")
     nams2[cont] <- paste(levels(P1)[i], levels(P2)[j], sep = ":")
     }}
  colnames(rec) <- nams2

  # Step 1. Add 1 for the crosses corresponding to column name
  for(i in 1:(p - 2)) { for(j in (i + 1):(p - 1)){
    #i <- 1; j <- 2
    cond <- paste(levels(P1)[i], levels(P2)[j], sep=":")
    rec[mate == cond, colnames(rec) == cond] <- 1
    rec[combination == cond & mate != cond, colnames(rec) == cond] <- -1
  }}

  # Step 2. Work on the last level
  leftr <- P1
  rightr <- P2
  leftc <- as.character(do.call(rbind, mapply(strsplit, nams2, split = ":"))[,1])
  rightc <- as.character(do.call(rbind, mapply(strsplit, nams2, split = ":"))[,2])

  for(i in 1:length(rec[1,])){
     rec[rightr == levels(P2)[p] & leftr == levels(P1)[i], leftc == levels(P1)[i]] <- -1
     rec[rightr == levels(P2)[p] & leftr == levels(P1)[i], rightc == levels(P1)[i]] <- 1
     rec[leftr == levels(P2)[p] & rightr == levels(P2)[i], leftc == levels(P1)[i]] <- 1
     rec[leftr == levels(P2)[p] & rightr == levels(P2)[i], rightc == levels(P1)[i]] <- -1
    }
  colnames(rec) <- paste("rs_", nams2, sep = "")
  rec
  }
  }

REC <- function(P1, P2, type = "fix", data = NULL){
    if(!is.null(data)){
    P1Name <- deparse(substitute(P1))
    P2Name <- deparse(substitute(P2))
    P1 <- data[[P1Name]]
    P2 <- data[[P2Name]]
    }
   if(type == "random"){
    combination <- factor( ifelse(as.character(P1) <= as.character(P2),
                                 paste(P1, P2, sep =""),
                                 paste(P2, P1, sep ="")) )
    dr <- ifelse(as.character(P1) < as.character(P2), -1,
              ifelse(as.character(P1) == as.character(P2), 0, 1))

    Z <- model.matrix(~ combination - 1) * dr
    colnames(Z) <- sub("combination", "", colnames(Z))
    Z <- Z[, apply(Z, 2, function(x) !all(x==0))]
    return(Z)
  } else {
  # P1 <- factor(as.character(P1))
  # P2 <- factor(as.character(P2))
  P1 <- factor(as.character(P1))
  P2 <- factor(as.character(P2))
  n <- length(P1)
  p <- length(levels(P1))
  # P1n <- as.numeric(P1); P2n <- as.numeric(P2)
  P1c <- as.character(P1); P2c <- as.character(P2)

  # mate <- factor(P1n*10 + P2n)
  # tmp <- as.numeric(paste(P1n, P2n, sep = ""))
  # mate <- factor(tmp, levels = unique(tmp))
  # as.character(P1:P2)

  # combination <- factor(apply(cbind(P1n*10 + P2n, P2n * 10 + P1n), 1, min))
  tmp <- ifelse(P1c < P2c, paste(P1c, P2c, sep =":"),
         paste(P2c, P1c, sep = ":"))
  combination <- factor(tmp) #, levels = unique(tmp))

  # dr <- ifelse(P1c == P2c, 0, ifelse(P1c > P2c, -1, 1))
  dr <- ifelse(P1c == P2c, 0, ifelse(P1c > P2c, -1, 1))
  # combLev <- factor( paste(P1c, P2c, sep = ":") )
  combLev <- P1:P2
  # tmp <- ifelse(P1n < P2n, paste(P1c, P2c, sep =":"),
  #        paste(P2c, P1c, sep =":"))
  # combLev <- factor(tmp, levels = unique(tmp))

  last <- c(); cont = 1
  for(i in 1:p){ for(j in 1:i) {
    last[cont] <- paste(i, j, sep=":")
    last[cont] <- paste(levels(P1)[i], levels(P2)[j], sep=":")
    cont = cont + 1
    } }
  # last <- as.numeric(last) # self + reciprocals ?
  levs <- levels(combLev) # All levels
  idx <- c()
    for(i in 1:length(last)){
    y <- which(levs == last[i])
    if(length(y) > 0) idx[i] <- y
    }
  idx <- idx[is.na(idx) == F]  # Added on 2/3/21
  levs <- as.character(levs[-idx]) # only crosses, without reciprocals

  # levs
  rec <- matrix(0, nrow = n, ncol = length(levs))
  colnames(rec) <- paste(levs)
  colNamsOrd <- levels(combLev)[-idx]

    for(i in 1:length(levs)){
        cond <- (combination == colnames(rec)[i] ) * 1
        rec[, i] <- cond
    }
  rec <- rec*dr
  # colnames(rec) <- paste("r_", colnames(rec), sep = "")
  colnames(rec) <- paste("r_", colNamsOrd, sep = "")
  rec }
}

REC.G3 <- function(P1, P2, type = "fix", data = NULL){
  # Reciprocal effects for designs with
  # no selfed parents
  # P1 <- df$Par1;P2 <- df$Par2
  # IT IS SUPERSEEDED
  if(!is.null(data)){
    P1Name <- deparse(substitute(P1))
    P2Name <- deparse(substitute(P2))
    P1 <- data[[P1Name]]
    P2 <- data[[P2Name]]
  }
  P1 <- factor(as.character(P1))
  P2 <- factor(as.character(P2))
  n <- length(P1)
  p <- length(levels(P1))
  P1n <- as.numeric(P1); P2n <- as.numeric(P2)
  P1c <- as.character(P1); P2c <- as.character(P2)
  mate <- factor(P1n*10 + P2n)
  combination <- factor(apply(cbind(P1n*10 + P2n, P2n * 10 + P1n), 1, min))
  dr <- ifelse(P1c == P2c, 0, ifelse(P1c < P2c, -1, 1))
  combLev <- factor( paste(P1c, P2c, sep = ":") )

  last <- c(); cont <- 1
  for(i in 1:p){ for(j in 1:i) {
    if(i != j) {
      last[cont] <- paste(i, j, sep="")
      cont = cont + 1 } } }
  # last
  last <- as.numeric(last)
  levs <- as.numeric(levels(mate))
  idx <- c()
  for(i in 1:length(last)){
    y <- which(levs == last[i])
    if(length(y) > 0) idx[i] <- y
  }
  levs <- as.character(levs[-idx])
  # levs
  rec <- matrix(0, nrow = n, ncol = length(levs))
  colnames(rec) <- paste(levs)
  colNamsOrd <- levels(combLev)[-idx]

  for(i in 1:length(levs)){
    cond <- (combination == colnames(rec)[i] ) * 1
    rec[, i] <- cond
  }
  rec <- rec*dr
  # colnames(rec) <- paste("r_", colnames(rec), sep = "")
  colnames(rec) <- paste("r_", colNamsOrd, sep = "")
  rec
}


H.BAR <- function(P1, P2, type = "fix", data = NULL){
    if(!is.null(data)){
    P1Name <- deparse(substitute(P1))
    P2Name <- deparse(substitute(P2))
    P1 <- data[[P1Name]]
    P2 <- data[[P2Name]]
  }
  P1 <- factor(as.character(P1))
  P2 <- factor(as.character(P2))
  P1c <- as.character(P1)
  P2c <- as.character(P2)
  cr <- ifelse(P1c == P2c, 0, 1)
  cr <- factor(cr)
  n <- length(cr)
  contrasts(cr) <- c("contr.treatment")
  crM <- model.matrix(~cr)
  crM <- crM[,-1]
  if(is.vector(crM) == T) crM <- matrix(crM, n, 1)
  colnames(crM) <- "h.bar"
  crM
}

MDD <- function(P1, P2, type = "fix", data = NULL){
    if(!is.null(data)){
    P1Name <- deparse(substitute(P1))
    P2Name <- deparse(substitute(P2))
    P1 <- data[[P1Name]]
    P2 <- data[[P2Name]]
  }
  P1 <- factor(as.character(P1))
  P2 <- factor(as.character(P2))
  p <- length(levels(P1))
  P1c <- as.character(P1)
  P2c <- as.character(P2)
  cr <- ifelse(P1c == P2c, 0, 1)
  cr <- factor(cr)
  n <- length(cr)
  contrasts(cr) <- c("contr.sum")
  crM <- model.matrix(~cr)
  crM <- crM[,-1]
  crM <- ifelse(crM == 1, - (p - 1), 1)
  if(is.vector(crM) == T) crM <- matrix(crM, n, 1)
  colnames(crM) <- "m"
  crM
}

# matHi <- function(P1, P2){
#   # For GE models ??
#   P1c <- as.character(P1)
#   P2c <- as.character(P2)
#   selfs <- ifelse(P1c == P2c, 1, 0)
#   contrasts(P1) <- c("contr.sum")
#   contrasts(P2) <- c("contr.sum")
#   Z1 <- model.matrix(~P1)
#   Z2 <- model.matrix(~P2)
#   H <- (Z1 + Z2) * selfs
#   H <- H[,-1]
# }

Hi <- function(P1, P2, type = "fix", data = NULL){
    if(!is.null(data)){
    P1Name <- deparse(substitute(P1))
    P2Name <- deparse(substitute(P2))
    P1 <- data[[P1Name]]
    P2 <- data[[P2Name]]
    }
  if(type == "random"){
    crosses <- ifelse(P1 == P2, 0, 1)
    Z <- GCA(P1, P2, type = "random") * crosses
    # colnames(Z) <- sub("combination", "", colnames(Z))
    # Z <- Z[, apply(Z, 2, function(x) !all(x==0))]
    return(Z)
  } else {

  # For GE2 and GE3 models
  P1 <- factor(as.character(P1))
  P2 <- factor(as.character(P2))
  P1c <- as.character(P1)
  P2c <- as.character(P2)
  #selfs <- ifelse(P1c == P2c, 1, 0)
  crosses <- ifelse(P1c == P2c, 0, 1)
  contrasts(P1) <- c("contr.sum")
  contrasts(P2) <- c("contr.sum")
  Z1 <- model.matrix(~P1)
  Z2 <- model.matrix(~P2)
  H <- (Z1 + Z2) * crosses
  H <- H[,-1]
  nams <- paste("h_", levels(P1)[1:(length(levels(P1))-1)], sep="")
  colnames(H) <- c(nams)
  H }
}

GCAC <- function(P1, P2, type = "fix", data = NULL){
  if(!is.null(data)){
    P1Name <- deparse(substitute(P1))
    P2Name <- deparse(substitute(P2))
    P1 <- data[[P1Name]]
    P2 <- data[[P2Name]]
  }
  if(type == "random"){
    selfs <- ifelse(P1 == P2, 1, 0)
    Z <- model.matrix(~ P1 - 1) * selfs
    # colnames(Z) <- sub("combination", "", colnames(Z))
    # Z <- Z[, apply(Z, 2, function(x) !all(x==0))]
    return(Z)
  } else {

  # For GE2 and GE3 models
  P1 <- factor(as.character(P1))
  P2 <- factor(as.character(P2))
  P1c <- as.character(P1)
  P2c <- as.character(P2)
  #selfs <- ifelse(P1c == P2c, 1, 0)
  crosses <- ifelse(P1c == P2c, 0, 1)
  contrasts(P1) <- c("contr.sum")
  contrasts(P2) <- c("contr.sum")
  Z1 <- model.matrix(~P1)
  Z2 <- model.matrix(~P2)
  H <- (Z1 + Z2) * crosses
  H <- H[,-1]
  nams <- paste("gc_", levels(P1)[1:(length(levels(P1))-1)], sep="")
  colnames(H) <- c(nams)
  H}
}

DD <- function(P1, P2, type = "fix", data = NULL){
    if(!is.null(data)){
    P1Name <- deparse(substitute(P1))
    P2Name <- deparse(substitute(P2))
    P1 <- data[[P1Name]]
    P2 <- data[[P2Name]]
  }
  # For Hyman model 2
  P1 <- factor(as.character(P1))
  P2 <- factor(as.character(P2))
  p <- length(levels(P1))
  contrasts(P1) <- c("contr.sum")
  contrasts(P2) <- c("contr.sum")
  Z1 <- model.matrix(~P1)
  Z2 <- model.matrix(~P2)
  H <- (Z1 + Z2)
  H[H == 2] <- -(p - 2)
  H[H == -2] <- (p - 2)
  H <- H[,-1]
  nams <- paste("d_", levels(P1)[1:(length(levels(P1))-1)], sep="")
  colnames(H) <- c(nams)
  H
}

GCAmis <- function(P1, P2, type = "fix", data = NULL){
  # This is modified to work with mating design 4
  # in case of missing crosses, but it is supposed
  # to work always (to be tested)
  # Edited on 15/4/2023
  if(!is.null(data)){
    P1Name <- deparse(substitute(P1))
    P2Name <- deparse(substitute(P2))
    P1 <- data[[P1Name]]
    P2 <- data[[P2Name]]
  }
  if(type == "random"){
    Z <- sommer::overlay(P1, P2, sparse = F)
  } else {
    # tmp <- data.frame(P2, P1)
    # arrange(tmp, P1)
    P1 <- factor(as.character(P1))
    P2 <- factor(as.character(P2))
    levs <- c(levels(P1), levels(P2))
    levs <- levels(factor(levs, levels = unique(levs)))
    Z1n <- factor(P1, levels = levs, ordered = T)
    Z2n <- factor(P2, levels = levs)
    contrasts(Z1n) <- c("contr.sum")
    contrasts(Z2n) <- c("contr.sum")

    # Da qui cambia in caso di missing crosses
    Z1 <- model.matrix(~ Z1n - 1)
    Z2 <- model.matrix(~ Z2n - 1)
    Z <- (Z1 + Z2)
    nams <- paste("g_", levs[1:(length(levs))], sep="")
    colnames(Z) <- c(nams)
    tab <- checkScheme(P1, P2)

    # Individua quali parents non hanno missing crosses
    # Edited on 15/04/2023
    # misCros <- nams[unique(unlist(tab$missingCrosses))]
    misCros <- unique(unlist(tab$missingCrosses))
    if(!is.null(misCros)){
      # misCros <- paste("g_", misCros, sep ="")
      sel <- !(levs %in% misCros)
      wsel <- max(which(sel == TRUE))
      sel <- rep(TRUE, length(nams))
      sel[wsel] <- FALSE
    } else {
      sel <- rep(TRUE, length(nams))
      sel[length(sel)] <- FALSE
    }
    # tmp1 <- names(which(apply(tab$tab, 1, sum, na.rm = T) * apply(tab$tab, 2, sum, na.rm = T) == length(levs) - 1))
    # tmp1 <- tmp1[length(tmp1)]
    # tmp1 <- paste("g_", tmp1, sep = "")
    # sel <- colnames(Z) != tmp1
    # if(all(sel == FALSE)) sel[length(sel)] <- TRUE
    # Z[,!sel] == 1
    sel
    Z <- Z[,sel] - Z[,!sel]
  }
  Z
}

SCAmis <- function(P1, P2, type = "fix", data = NULL){
  # This is modified to work with mating design 4
  # in case of missing crosses, but it is supposed
  # to work always (to be tested)
  # Edited on 18/3/2023
  if(!is.null(data)){
    P1Name <- deparse(substitute(P1))
    P2Name <- deparse(substitute(P2))
    P1 <- data[[P1Name]]
    P2 <- data[[P2Name]]
  }
  if(type == "random"){
    crosses <- ifelse(P1 == P2, 0, 1)
    combination <- factor( ifelse(as.character(P1) <= as.character(P2),
                                  paste(P1, P2, sep =""),
                                  paste(P2, P1, sep ="")) )
    Z <- model.matrix(~ combination - 1) * crosses
    colnames(Z) <- sub("combination", "", colnames(Z))
    Z <- Z[, apply(Z, 2, function(x) !all(x==0))]
    return(Z)
  } else {

    # It is also used where the selfs are not included
    P1 <- factor(as.character(P1)) #, levels = unique(P1))
    P2 <- factor(as.character(P2)) #, levels = unique(P1)) # Livelli uguali?
    P1c <- as.character(P1); P2c <- as.character(P2)

    # create the combination levels
    tmp <- ifelse(P1c < P2c, paste(P1c, P2c, sep =":"),
                  paste(P2c, P1c, sep = ":"))
    combination <- factor(tmp) #, levels = unique(tmp))
    combLev <- NA

    # Create the matings (considers the reciprocals)
    mating <- P1:P2
    p <- length(levels(factor(c(levels(P1), levels(P2)) )))
    n <- length(combination)

    # See whether selfs are included and find the last level for each
    # combination
    selflist <- levels(factor(combination[P1c == P2c]))
    levs <- sort(unique(c(levels(P1), levels(P2))))
    tmp <- paste(levs, max(levs), sep = ":")
    parLevs <- levs

    # Step 1. Create an empty matrix
    # Da qui cambia per la matrice sbilanciata
    # Populate the matrix from GCAmat
    gcamat <- GCAmis(P1, P2)
    np <- ncol(gcamat)
    n <- nrow(gcamat)
    tab <- checkScheme(P1, P2)$missingCrosses
    numMissing <- nrow(tab)

    # Create empty scamat
    scamat <- matrix(0, n, np * (np - 1)/2)
    nams <- rep(0, np * (np - 1)/2)
    cont <- 1
    # Cross multiplication of matrices
    for(i in 1:(np-1)){
      for(j in (i+1):np){
        scamat[,cont] <- gcamat[,i] * gcamat[,j]
        n1 <- substr(colnames(gcamat)[i], 3, nchar(colnames(gcamat)[j]))
        n2 <- substr(colnames(gcamat)[j], 3, nchar(colnames(gcamat)[j]))
        nams[cont] <- paste(n1,n2, sep = ":")
        cont <- cont + 1
      }
    }
    colnames(scamat) <- nams

    # Rimuove le colonne dei missing crosses
    if(!is.null(numMissing)){
      toRem <- c()
      for(i in 1:numMissing){
        # i <- 1
        # sel <- paste(parLevs[tab[i,1]], parLevs[tab[i,2]], sep = ":")
        sel <- paste(tab[i,1], tab[i,2], sep = ":")
        sel <- which(colnames(scamat)==sel)
        # print(sel)
        toRem <- c(toRem, sel)
      }
      scamat <- scamat[,-toRem]
    }

    # Rimuove l'ultima colonna e la sottrae dalle altre
    last <- length(scamat[1,])
    scamat <- scamat - scamat[,last]
    scamat <- scamat[,-last]
    # Updated on 7/4/2023
    colnames(scamat) <- paste("s_", colnames(scamat), sep = "")
    # colnames(scamat) <- sub(":", "-", colnames(scamat))
    scamat
  }
}
OnofriAndreaPG/lmDiallel documentation built on April 23, 2023, 1:39 p.m.