library(stats)
library(dplyr)
library(recipes)
library(rsample)
library(parsnip)
library(tune)
library(magrittr)
library(future)
library(furrr)
library(workflows)
library(text)
library(tibble)
library(testthat)
context("Testing PM tutorial")
test_that("PM tutorial", {
skip_on_cran()
colourise <- function(text, fg = "black", bg = NULL) {
term <- Sys.getenv()["TERM"]
colour_terms <- c("xterm-color", "xterm-256color", "screen", "screen-256color")
if (rcmd_running() || !any(term %in% colour_terms, na.rm = TRUE)) {
return(text)
}
col_escape <- function(col) {
paste0("\033[", col, "m")
}
col <- .fg_colours[tolower(fg)]
if (!is.null(bg)) {
col <- paste0(col, .bg_colours[tolower(bg)], sep = ";")
}
init <- col_escape(col)
reset <- col_escape("0")
paste0(init, text, reset)
}
.fg_colours <- c(
"black" = "0;30",
"blue" = "0;34",
"green" = "0;32",
"cyan" = "0;36",
"red" = "0;31",
"purple" = "0;35"
# "brown" = "0;33",
# "light gray" = "0;37",
# "dark gray" = "1;30",
# "light blue" = "1;34",
# "light green" = "1;32",
# "light cyan" = "1;36",
# "light red" = "1;31",
# "light purple" = "1;35",
# "yellow" = "1;33",
# "white" = "1;37"
)
.bg_colours <- c(
"black" = "40",
"red" = "41",
"green" = "42",
"brown" = "43",
"blue" = "44",
"purple" = "45",
"cyan" = "46",
"light gray" = "47"
)
rcmd_running <- function() {
nchar(Sys.getenv("R_TESTS")) != 0
}
sorting_xs_and_x_append <- function(x, x_append, ...) {
variable_name_index_pca <- NA
if (!is.null(x)) {
# In case the embedding is in list form get the tibble form
if (!tibble::is_tibble(x) & length(x) == 1) {
x1 <- x[[1]]
# Get names for description
x_name <- names(x)
# Get embedding info to save for model description
embedding_description <- comment(x[[1]])
# In case there are several embeddings in list form get the x_names and
# embedding description for model description
} else if (!tibble::is_tibble(x) & length(x) > 1) {
x_name <- names(x)
x_name <- paste(x_name, sep = " ", collapse = " & ")
x_name <- paste("input:", x_name, sep = " ", collapse = " ")
embedding_description <- comment(x[[1]])
# In case it is just one word embedding as tibble
} else {
x1 <- x
x_name <- deparse(substitute(x))
embedding_description <- comment(x)
}
}
# Get names for the added variables to save to description
x_append_names <- paste(names(x_append), collapse = ", ")
# Possibility to train without word embeddings
if (is.null(x)) {
x1 <- x_append
x_append <- NULL
colnames(x1) <- paste0(
"Dim", "_",
colnames(x1)
)
x_name <- NULL
embedding_description <- NULL
}
############ Arranging word embeddings to be concatenated from different texts ############
##################################################
if (!tibble::is_tibble(x) & length(x) > 1) {
# Select all variables that starts with Dim in each dataframe of the list.
xlist <- lapply(x, function(X) {
X <- dplyr::select(X, dplyr::starts_with("Dim"))
})
Nword_variables <- length(xlist)
# Give each column specific names with indexes so that they can be handled separately in the PCAs
for (i in 1:Nword_variables) {
colnames(xlist[[i]]) <- paste("DimWs", i, ".", colnames(xlist[[i]]), sep = "")
}
# Make vector with each index so that we can allocate them separately for the PCAs
variable_name_index_pca <- list()
for (i in 1:Nword_variables) {
variable_name_index_pca[i] <- paste("DimWs", i, sep = "")
}
# Make one df rather then list.
x1 <- dplyr::bind_cols(xlist)
}
############ End for multiple word embeddings ############
##########################################################
#### Add other variables to word embeddings x_append=NULL
if (!is.null(x_append)) {
x1 <- add_variables_to_we(
word_embeddings = x1,
data = x_append, ...
)
}
x1 <- dplyr::select(x1, dplyr::starts_with("Dim"))
variables_names <- list(
x1, x_name, embedding_description,
x_append_names, variable_name_index_pca
)
names(variables_names) <- c(
"x1", "x_name", "embedding_description",
"x_append_names", "variable_name_index_pca"
)
return(variables_names)
}
statisticalMode <- function(x) {
ux <- unique(x)
ux[which.max(tabulate(match(x, ux)))]
}
select_eval_measure_val <- function(eval_measure = "bal_accuracy",
holdout_pred = NULL,
truth = y,
estimate = .pred_class, class) {
# Get accuracy
if (eval_measure == "accuracy") {
eval_measure_val <- yardstick::accuracy(holdout_pred, truth = y, estimate = .pred_class)
} else if (eval_measure == "bal_accuracy") {
eval_measure_val <- yardstick::bal_accuracy(holdout_pred, truth = y, estimate = .pred_class)
} else if (eval_measure == "sens") {
eval_measure_val <- yardstick::sens(holdout_pred, truth = y, estimate = .pred_class)
} else if (eval_measure == "spec") {
eval_measure_val <- yardstick::spec(holdout_pred, truth = y, estimate = .pred_class)
} else if (eval_measure == "precision") {
eval_measure_val <- yardstick::precision(holdout_pred, truth = y, estimate = .pred_class)
} else if (eval_measure == "kappa") {
eval_measure_val <- yardstick::kap(holdout_pred, truth = y, estimate = .pred_class)
} else if (eval_measure == "f_measure") {
eval_measure_val <- yardstick::f_meas(holdout_pred, truth = y, estimate = .pred_class)
} else if (eval_measure == "roc_auc") {
class1_name <- eval(class)
eval_measure_val <- yardstick::roc_auc(holdout_pred, truth = y, dplyr::all_of(class1_name))
} else if (eval_measure == "rmse") {
eval_measure_val <- yardstick::rmse(holdout_pred, truth = y, estimate = .pred)
} else if (eval_measure == "rsq") {
eval_measure_val <- yardstick::rsq(holdout_pred, truth = y, estimate = .pred)
} else if (eval_measure == "cor_test") {
cor_testing <- stats::cor.test(holdout_pred$y, holdout_pred$.pred, na.action = na.omit)
estimate1 <- cor_testing[[4]][[1]]
metric <- "cor_test"
estimator <- "standard"
eval_measure_val <- tibble::tibble(metric, estimator, as.numeric(estimate1))
colnames(eval_measure_val) <- c(".metric", ".estimator", ".estimate")
}
eval_measure_val
}
fit_model_rmse <- function(object,
model = "regression",
eval_measure = "rmse",
penalty = 1,
mixture = 0,
preprocess_PCA = NA,
variable_name_index_pca = NA,
first_n_predictors = NA,
preprocess_step_center = TRUE,
preprocess_step_scale = TRUE,
impute_missing = FALSE) {
data_train <- rsample::analysis(object)
data_train <- tibble::as_tibble(data_train)
# If testing N first predictors help(step_scale) first_n_predictors = 3
if (!is.na(first_n_predictors)) {
# Select y and id
Nvariable_totals <- length(data_train)
variable_names <- colnames(data_train[(first_n_predictors + 1):(Nvariable_totals - 2)])
} else {
variable_names <- "id_nr"
}
# Get number of embeddings provided
n_embeddings <- as.numeric(comment(eval_measure))
# Recipe for one embedding input summary(xy_recipe) help(all_of) library(tidyverse) help(step_naomit)
if (n_embeddings == 1) {
xy_recipe <- data_train %>%
recipes::recipe(y ~ .) %>%
recipes::update_role(dplyr::all_of(variable_names), new_role = "Not_predictors") %>%
recipes::update_role(id_nr, new_role = "id variable") %>%
recipes::update_role(y, new_role = "outcome") # %>%
if (!impute_missing) {
xy_recipe <- recipes::step_naomit(xy_recipe, recipes::all_predictors(), skip = TRUE)
} else if (impute_missing) {
xy_recipe <- recipes::step_knnimpute(xy_recipe, recipes::all_predictors(), neighbors = 10) # , skip = TRUE
}
if (preprocess_step_center) {
xy_recipe <- recipes::step_center(xy_recipe, recipes::all_predictors())
}
if (preprocess_step_scale) {
xy_recipe <- recipes::step_scale(xy_recipe, recipes::all_predictors())
}
# If preprocess_PCA is not NULL add PCA step with number of component of % of variance to retain specification
xy_recipe <- xy_recipe %>%
{
if (!is.na(preprocess_PCA)) {
if (preprocess_PCA >= 1) {
recipes::step_pca(., recipes::all_predictors(), num_comp = preprocess_PCA)
} else if (preprocess_PCA < 1) {
recipes::step_pca(., recipes::all_predictors(), threshold = preprocess_PCA)
} else {
.
}
} else {
.
}
}
xy_recipe_prep <- recipes::prep(xy_recipe)
# Recipe for multiple word embedding input (with possibility of separate PCAs)
} else {
xy_recipe <- data_train %>%
recipes::recipe(y ~ .) %>%
# recipes::step_BoxCox(all_predictors()) %>% preprocess_PCA = NULL, preprocess_PCA = 0.9 preprocess_PCA = 2
recipes::update_role(id_nr, new_role = "id variable") %>%
recipes::update_role(-id_nr, new_role = "predictor") %>%
recipes::update_role(y, new_role = "outcome")
if (!impute_missing) {
xy_recipe <- recipes::step_naomit(xy_recipe, recipes::all_predictors(), skip = TRUE)
} else if (impute_missing) {
xy_recipe <- recipes::step_knnimpute(xy_recipe, recipes::all_predictors(), neighbors = 10) # , skip = TRUE
}
if (preprocess_step_center) {
xy_recipe <- recipes::step_center(xy_recipe, recipes::all_predictors())
}
if (preprocess_step_scale) {
xy_recipe <- recipes::step_scale(xy_recipe, recipes::all_predictors())
}
# If preprocess_PCA is not NULL add PCA step with number of component of % of variance to retain specification
# Adding a PCA in each loop; first selecting all variables starting with i="Dim_we1"; and then "Dim_we2" etc
if (!is.na(preprocess_PCA)) {
if (preprocess_PCA >= 1) {
for (i in variable_name_index_pca) {
xy_recipe <-
xy_recipe %>%
# !! slices the current name into the `matches()` function.
# We use a custom prefix so there are no name collisions for the
# results of each PCA step.
recipes::step_pca(dplyr::matches(!!i), num_comp = preprocess_PCA, prefix = paste("PCA_", i, "_"))
}
} else if (preprocess_PCA < 1) {
for (i in variable_name_index_pca) {
xy_recipe <-
xy_recipe %>%
recipes::step_pca(dplyr::matches(!!i), threshold = preprocess_PCA, prefix = paste("PCA_", i, "_"))
}
}
}
xy_recipe_prep <- recipes::prep(xy_recipe)
}
# Figure out how many predictors to know whether to use simple or multiple regression, which
# depend on number of of PCA components that are retrived and/or whether first_n_predictors is used
if (!is.na(first_n_predictors) & is.na(preprocess_PCA)) {
# Get number of predictors from receipe
nr_predictors <- table(xy_recipe_prep[[1]]$role)[["predictor"]]
} else if (!is.na(preprocess_PCA)) {
# To load the prepared training data into a variable juice() is used.
# It extracts the data from the xy_recipe object.
nr_predictors <- recipes::juice(xy_recipe_prep)
# Count number of PCAs
nr_predictors <- length(grep(x = colnames(nr_predictors), pattern = "PC"))
} else if (is.na(preprocess_PCA) & is.na(first_n_predictors)) {
nr_predictors <- recipes::juice(xy_recipe_prep)
nr_predictors <- length(nr_predictors) - 2
}
# Ridge and/or Lasso
if (nr_predictors > 1) {
# Create and fit model help(linear_reg)
mod_spec <-
{
if (model == "regression") {
parsnip::linear_reg(penalty = penalty, mixture = mixture)
} else if (model == "logistic") {
parsnip::logistic_reg(
mode = "classification",
penalty = penalty,
mixture = mixture
)
}
} %>%
parsnip::set_engine("glmnet")
# Create Workflow (to know variable roles from recipes) help(workflow)
wf <- workflows::workflow() %>%
workflows::add_model(mod_spec) %>%
workflows::add_recipe(xy_recipe)
# Fit model
mod <- parsnip::fit(wf, data = data_train)
# Standard regression
} else if (nr_predictors == 1) {
mod_spec <- {
if (model == "regression") {
parsnip::linear_reg(mode = "regression") %>%
parsnip::set_engine("lm")
} else if (model == "logistic") {
parsnip::logistic_reg(mode = "classification") %>%
parsnip::set_engine("glm")
}
}
# Create Workflow (to know variable roles from recipes) help(workflow)
wf <- workflows::workflow() %>%
workflows::add_model(mod_spec) %>%
workflows::add_recipe(xy_recipe)
# Fit model
mod <- parsnip::fit(wf, data = data_train)
}
# Prepare the test data; remove y and according to the recipe
xy_testing <- rsample::assessment(object) %>%
dplyr::select(-y)
if (model == "regression") {
# Apply model on new data; penalty
holdout_pred <-
stats::predict(mod, xy_testing) %>%
dplyr::bind_cols(rsample::assessment(object) %>%
dplyr::select(y, id_nr))
# Get RMSE; eval_measure = "rmse" library(tidyverse)
eval_result <- select_eval_measure_val(eval_measure,
holdout_pred = holdout_pred,
truth = y, estimate = .pred
)$.estimate
# Sort output of RMSE, predictions and truth (observed y)
output <- list(
list(eval_result), list(holdout_pred$.pred), list(holdout_pred$y), list(preprocess_PCA),
list(holdout_pred$id_nr)
)
names(output) <- c("eval_result", "predictions", "y", "preprocess_PCA", "id_nr")
} else if (model == "logistic") {
holdout_pred_class <-
stats::predict(mod, xy_testing, type = c("class")) %>%
dplyr::bind_cols(rsample::assessment(object) %>%
dplyr::select(y, id_nr))
holdout_pred <-
stats::predict(mod, xy_testing, type = c("prob")) %>%
dplyr::bind_cols(rsample::assessment(object) %>%
dplyr::select(y, id_nr))
holdout_pred$.pred_class <- holdout_pred_class$.pred_class
# Get RMSE; eval_measure = "rmse"
eval_result <- select_eval_measure_val(eval_measure,
holdout_pred = holdout_pred,
truth = y, estimate = .pred_class
)$.estimate
# Sort output of RMSE, predictions and truth (observed y)
output <- list(
list(eval_result),
list(holdout_pred$.pred_class),
list(holdout_pred$y),
list(holdout_pred[1]),
list(holdout_pred[2]),
list(preprocess_PCA),
list(holdout_pred$id_nr)
)
names(output) <- c(
"eval_result",
"estimate",
"truth",
".pred_1",
".pred_2",
"preprocess_PCA",
"id_nr"
)
}
output
}
fit_model_rmse_wrapper <- function(penalty = penalty,
mixture = mixture,
object,
model,
eval_measure,
preprocess_PCA = preprocess_PCA,
variable_name_index_pca = variable_name_index_pca,
first_n_predictors = first_n_predictors,
preprocess_step_center = preprocess_step_center,
preprocess_step_scale = preprocess_step_scale,
impute_missing = impute_missing) {
fit_model_rmse(object,
model,
eval_measure,
penalty,
mixture,
preprocess_PCA = preprocess_PCA,
variable_name_index_pca = variable_name_index_pca,
first_n_predictors = first_n_predictors,
preprocess_step_center = preprocess_step_center,
preprocess_step_scale = preprocess_step_scale,
impute_missing = impute_missing
)
}
tune_over_cost <- function(object,
model,
eval_measure,
penalty,
mixture,
preprocess_PCA = preprocess_PCA,
variable_name_index_pca = variable_name_index_pca,
first_n_predictors = first_n_predictors,
preprocess_step_center = preprocess_step_center,
preprocess_step_scale = preprocess_step_scale,
impute_missing = impute_missing) {
T1 <- Sys.time()
# Number of components or percent of variance to attain; min_halving; preprocess_PCA = NULL
if (!is.na(preprocess_PCA[1])) {
if (preprocess_PCA[1] == "min_halving") {
num_features <- length(rsample::analysis(object)) - 1
num_users <- nrow(rsample::analysis(object))
preprocess_PCA_value <- round(max(min(num_features / 2, num_users / 1.5), min(50, num_features)))
preprocess_PCA_value
} else if (preprocess_PCA[1] >= 1) {
preprocess_PCA_value <- preprocess_PCA
} else if (preprocess_PCA[1] < 1) {
preprocess_PCA_value <- preprocess_PCA
} else {
preprocess_PCA_value <- NA
}
}
if (is.na(preprocess_PCA[1])) {
preprocess_PCA_value <- NA
}
## Sequence to select dimensions from the semreps. SM-article state:
# "Adding 1, then multiplying by 1.3 and finally rounding to the nearest
# integer (e.g., 1, 3, 5, 8, where the next number of dimensions to be tested are the first 12;
# in other words ([8 + 1*] 1.3)
if (!is.na(first_n_predictors)) {
stop <- first_n_predictors
new_num <- 1
selection_vector <- 1
while (new_num < stop) {
new_num <- round((new_num + 1) * 1.3)
selection_vector <- c(selection_vector, new_num)
}
# Changing the last number to the maximum number of dimensions
selection_vector[length(selection_vector)] <- first_n_predictors
first_n_predictors <- selection_vector
first_n_predictors
}
grid_inner <- base::expand.grid(
penalty = penalty,
mixture = mixture,
preprocess_PCA = preprocess_PCA_value,
first_n_predictors = first_n_predictors
)
# Test models with the different hyperparameters for the inner samples
tune_results <- purrr::pmap(list(
grid_inner$penalty,
grid_inner$mixture,
grid_inner$preprocess_PCA,
grid_inner$first_n_predictors
),
fit_model_rmse_wrapper,
object = object,
model = model,
eval_measure = eval_measure,
variable_name_index_pca = variable_name_index_pca,
preprocess_step_center = preprocess_step_center,
preprocess_step_scale = preprocess_step_scale,
impute_missing = impute_missing
)
# Sort the output to separate the rmse, predictions and truth
tune_outputlist <- tune_results %>%
dplyr::bind_rows() %>%
split.default(names(.)) %>%
purrr::map(na.omit)
# Extract the RMSE
tune_eval_result <- unlist(tune_outputlist$eval_result$eval_result)
# Add RMSE to the grid
grid_inner_eval_result <- grid_inner %>%
dplyr::mutate(eval_result = tune_eval_result)
# Progression output
best_eval <- bestParameters(
data = grid_inner_eval_result,
eval_measure = eval_measure
)
T2 <- Sys.time()
time <- round(T2 - T1, digits = 2)
variable_time <- sprintf(
"(duration: %s %s).",
time,
units(time)
)
description_text <- paste(
"Fold:", eval_measure,
round(best_eval$eval_result, digits = 3),
variable_time, "\n"
)
cat(colourise(description_text, "green"))
return(grid_inner_eval_result)
}
bestParameters <- function(data, eval_measure) {
if (eval_measure %in% c(
"accuracy", "bal_accuracy", "sens", "spec",
"precision", "kappa", "f_measure", "roc_auc",
"rsq", "cor_test"
)) {
bestParametersFunction <- function(data) data[which.max(data$eval_result), ]
} else if (eval_measure == "rmse") {
bestParametersFunction <- function(data) data[which.min(data$eval_result), ]
}
results <- bestParametersFunction(data)
return(results)
}
summarize_tune_results <- function(object,
model,
eval_measure,
penalty,
mixture,
preprocess_PCA = preprocess_PCA,
variable_name_index_pca = variable_name_index_pca,
first_n_predictors = first_n_predictors,
preprocess_step_center = preprocess_step_center,
preprocess_step_scale = preprocess_step_scale,
impute_missing = impute_missing) {
# Return row-bound tibble containing the INNER results
results <- purrr::map_df(
.x = object$splits,
.f = tune_over_cost,
penalty = penalty,
mixture = mixture,
preprocess_PCA = preprocess_PCA,
variable_name_index_pca = variable_name_index_pca,
model = model,
eval_measure = eval_measure,
first_n_predictors = first_n_predictors,
preprocess_step_center = preprocess_step_center,
preprocess_step_scale = preprocess_step_scale,
impute_missing = impute_missing
)
return(results)
}
x = word_embeddings_4$texts$harmonytext
y = Language_based_assessment_data_8$hilstotal
x_append = NULL
cv_method = "validation_split"
outside_folds = 10
outside_strata_y = "y"
outside_breaks = 4
inside_folds = 3 / 4
inside_strata_y = "y"
inside_breaks = 4
model = "regression"
eval_measure = "default"
preprocess_step_center = TRUE
preprocess_step_scale = TRUE
preprocess_PCA = NA
penalty = 10^seq(-16, 16)
mixture = c(0)
first_n_predictors = NA
impute_missing = FALSE
method_cor = "pearson"
model_description = "Consider writing a description of your model here"
multi_cores = "multi_cores_sys_default"
save_output = "all"
seed = 2020
T1_textTrainRegression <- Sys.time()
set.seed(seed)
random_number <- runif(5)
expect_equal(random_number[1], 0.6469028, tolerance = 0.00001)
expect_equal(random_number[5], 0.1360972, tolerance = 0.00001)
# Select correct eval_measure depending on model when default
if (model == "regression" & eval_measure == "default") {
eval_measure <- "rmse"
} else if (model == "logistic" & eval_measure == "default") {
eval_measure <- "bal_accuracy"
}
# The fit_model_rmse function need to number of word embeddings -- instead of
# sending a separate parameter number of embeddings are give as a comment in "model"
if (tibble::is_tibble(x)) {
comment(eval_measure) <- "1"
} else {
comment(eval_measure) <- paste(length(x))
}
# Sorting out y
if (tibble::is_tibble(y) | is.data.frame(y)) {
y_name <- colnames(y)
y <- tibble::as_tibble_col(y[[1]], column_name = "y")
} else {
y_name <- deparse(substitute(y))
y <- tibble::as_tibble_col(y, column_name = "y")
}
# Sorting out x's
variables_and_names <- sorting_xs_and_x_append(x = x, x_append = x_append)
x2 <- variables_and_names$x1
x_name <- variables_and_names$x_name
embedding_description <- variables_and_names$embedding_description
x_append_names <- variables_and_names$x_append_names
variable_name_index_pca <- variables_and_names$variable_name_index_pca
rm(variables_and_names)
xy <- dplyr::bind_cols(x2, y)
# xy <- tibble::as_tibble(xy) xy[1537]
xy$id_nr <- c(seq_len(nrow(xy)))
# complete.cases is not neccassary
# Cross-Validation inside_folds = 3/4; results_nested_resampling[[1]][[1]][[1]]
if (cv_method == "cv_folds") {
results_nested_resampling <- rlang::expr(rsample::nested_cv(xy,
outside = rsample::vfold_cv(
v = !!outside_folds,
repeats = 1,
strata = !!outside_strata_y,
breaks = !!outside_breaks
), #
inside = rsample::vfold_cv(
v = !!inside_folds,
repeats = 1,
strata = !!inside_strata_y,
breaks = !!inside_breaks
)
))
}
if (cv_method == "validation_split") {
results_nested_resampling <- rlang::expr(rsample::nested_cv(xy,
outside = rsample::vfold_cv(
v = !!outside_folds,
repeats = 1,
strata = !!outside_strata_y,
breaks = !!outside_breaks
),
inside = rsample::validation_split(
prop = !!inside_folds,
strata = !!inside_strata_y,
breaks = !!inside_breaks
)
))
}
results_nested_resampling <- rlang::eval_tidy(results_nested_resampling)
expect_equal(results_nested_resampling$splits[[1]][[1]][[1]][[1]], 0.4212412, tolerance = 0.00001)
expect_equal(results_nested_resampling$splits[[1]][[1]][[1]][[2]], -0.00678613, tolerance = 0.00001)
# Deciding whether to use multicores depending on system and settings.
if (multi_cores == "multi_cores_sys_default") {
if (.Platform$OS.type == "unix") {
multi_cores_use <- TRUE
} else if (.Platform$OS.type == "windows") {
multi_cores_use <- FALSE
}
} else if (multi_cores == TRUE) {
multi_cores_use <- TRUE
} else if (multi_cores == FALSE) {
multi_cores_use <- FALSE
}
if (multi_cores_use == FALSE) {
tuning_results <- purrr::map(
.x = results_nested_resampling$inner_resamples,
.f = summarize_tune_results,
model = model,
eval_measure = eval_measure,
penalty = penalty,
mixture = mixture,
preprocess_PCA = preprocess_PCA,
variable_name_index_pca = variable_name_index_pca,
first_n_predictors = first_n_predictors,
preprocess_step_center = preprocess_step_center,
preprocess_step_scale = preprocess_step_scale,
impute_missing = impute_missing
)
} else if (multi_cores_use == TRUE) {
# The multisession plan uses the local cores to process the inner resampling loop.
future::plan(future::multisession)
# The object tuning_results is a list of data frames for each of the OUTER resamples.
tuning_results <- furrr::future_map(
.options = furrr::furrr_options(seed = seed),
.x = results_nested_resampling$inner_resamples,
.f = summarize_tune_results,
model = model,
eval_measure = eval_measure,
penalty = penalty,
mixture = mixture,
preprocess_PCA = preprocess_PCA,
variable_name_index_pca = variable_name_index_pca,
first_n_predictors = first_n_predictors,
preprocess_step_center = preprocess_step_center,
preprocess_step_scale = preprocess_step_scale,
impute_missing = impute_missing
)
}
expect_equal(tuning_results[[1]]$eval_result[[1]], 7.434478, tolerance = 0.00001)
# Function to get the lowest eval_measure_val
# Determine the best parameter estimate from each INNER sample to be used
# for each of the outer resampling iterations:
hyper_parameter_vals <-
tuning_results %>%
purrr::map_df(bestParameters, eval_measure) %>%
dplyr::select(c(penalty, mixture, preprocess_PCA, first_n_predictors))
# Bind best results
results_split_parameter <-
dplyr::bind_cols(results_nested_resampling, hyper_parameter_vals)
# Compute the outer re-sampling results for each of the comment(model)
# splits using the corresponding tuning parameter value from results_split_parameter.
results_outer <- purrr::pmap(
list(
object = results_nested_resampling$splits,
penalty = results_split_parameter$penalty,
mixture = results_split_parameter$mixture,
preprocess_PCA = results_split_parameter$preprocess_PCA,
first_n_predictors = results_split_parameter$first_n_predictors,
variable_name_index_pca = list(variable_name_index_pca),
model = model,
eval_measure = list(eval_measure),
preprocess_step_center = preprocess_step_center,
preprocess_step_scale = preprocess_step_scale,
impute_missing = impute_missing
),
fit_model_rmse
)
# Separate RMSE, predictions and observed y
outputlist_results_outer <- results_outer %>%
dplyr::bind_rows() %>%
split.default(names(.)) %>%
purrr::map(na.omit)
# Get overall evaluation measure between predicted and observed values
if (model == "regression") {
# Unnest predictions and y
predy_y <- tibble::tibble(
tidyr::unnest(outputlist_results_outer$predictions, cols = c(predictions)),
tidyr::unnest(outputlist_results_outer$y, cols = c(y)),
tidyr::unnest(outputlist_results_outer$id_nr, cols = c(id_nr))
)
predy_y <- predy_y %>% dplyr::arrange(id_nr)
# Correlate predictions and observed correlation
collected_results <- stats::cor.test(predy_y$predictions, predy_y$y, method = method_cor, alternative = "greater")
collected_results <- list(predy_y, collected_results)
} else if (model == "logistic") {
collected_results <- classification_results(outputlist_results_outer = outputlist_results_outer, ...)
# Save predictions outside list to make similar structure as model == regression output.
predy_y <- collected_results$predy_y
# Remove the predictions from list
collected_results[[1]] <- NULL
}
##### Construct final model to be saved and applied on other data ########
############################################################################
xy_all <- xy
######### One word embedding as input
n_embbeddings <- as.numeric(comment(eval_measure))
if (n_embbeddings == 1) {
# If testing N first predictors help(step_scale) first_n_predictors = 3
if (!is.na(first_n_predictors)) {
# Select y and id
Nvariable_totals <- length(xy_all)
variable_names <- colnames(xy_all[(first_n_predictors + 1):(Nvariable_totals - 2)])
} else {
variable_names <- "id_nr"
}
# [0,] is added to just get the col names (and avoid saving all the data with the receipt) help(step_naomit)
final_recipe <- # xy %>%
recipes::recipe(y ~ ., xy_all[0, ]) %>%
recipes::update_role(all_of(variable_names), new_role = "Not_predictors") %>%
recipes::update_role(id_nr, new_role = "id variable") %>%
# recipes::update_role(-id_nr, new_role = "predictor") %>%
recipes::update_role(y, new_role = "outcome")
if (!impute_missing) {
final_recipe <- recipes::step_naomit(final_recipe, recipes::all_predictors(), skip = TRUE)
} else if (impute_missing) {
final_recipe <- recipes::step_knnimpute(final_recipe, recipes::all_predictors(), neighbors = 10)
}
if (preprocess_step_center) {
final_recipe <- recipes::step_center(final_recipe, recipes::all_predictors())
}
if (preprocess_step_scale) {
final_recipe <- recipes::step_scale(final_recipe, recipes::all_predictors())
}
# If preprocess_PCA is not NULL add PCA step with number of component of % of variance to retain specification
final_recipe <- final_recipe %>%
{
if (!is.na(preprocess_PCA[1])) {
if (preprocess_PCA[1] >= 1) {
recipes::step_pca(., recipes::all_predictors(),
num_comp = statisticalMode(results_split_parameter$preprocess_PCA)
)
} else if (preprocess_PCA[1] < 1) {
recipes::step_pca(., recipes::all_predictors(),
threshold = statisticalMode(results_split_parameter$preprocess_PCA)
)
} else {
.
}
} else {
.
}
}
######### More than one word embeddings as input
} else {
final_recipe <- recipes::recipe(y ~ ., xy_all[0, ]) %>%
recipes::update_role(id_nr, new_role = "id variable") %>%
recipes::update_role(-id_nr, new_role = "predictor") %>%
recipes::update_role(y, new_role = "outcome")
if (!impute_missing) {
final_recipe <- recipes::step_naomit(final_recipe, recipes::all_predictors(), skip = TRUE)
} else if (impute_missing) {
final_recipe <- recipes::step_knnimpute(final_recipe, recipes::all_predictors(), neighbors = 10)
}
if (preprocess_step_center) {
final_recipe <- recipes::step_center(final_recipe, recipes::all_predictors())
}
if (preprocess_step_scale) {
final_recipe <- recipes::step_scale(final_recipe, recipes::all_predictors())
}
# Adding a PCA in each loop; first selecting all variables starting with i="Dim_we1"; and then "Dim_we2" etc
if (!is.na(preprocess_PCA)) {
if (preprocess_PCA >= 1) {
for (i in variable_name_index_pca) {
final_recipe <-
final_recipe %>%
# !! slices the current name into the `matches()` function.
# We use a custom prefix so there are no name collisions for the
# results of each PCA step.
recipes::step_pca(dplyr::matches(!!i), num_comp = preprocess_PCA, prefix = paste("PCA_", i, "_"))
}
# }
} else if (preprocess_PCA < 1) {
for (i in variable_name_index_pca) {
final_recipe <-
final_recipe %>%
recipes::step_pca(dplyr::matches(!!i), threshold = preprocess_PCA, prefix = paste("PCA_", i, "_"))
}
}
}
}
# Creating recipe in another environment to avoid saving unnecessarily large parts of the environment
# when saving the object to rda, rds or Rdata.
# http://r.789695.n4.nabble.com/Model-object-when-generated-in-a-function-saves-
# entire-environment-when-saved-td4723192.html
recipe_save_small_size <- function(final_recipe, xy_all) {
env_final_recipe <- new.env(parent = globalenv())
env_final_recipe$xy_all <- xy_all
env_final_recipe$final_recipe <- final_recipe
with(env_final_recipe, preprocessing_recipe_save <- suppressWarnings(recipes::prep(final_recipe,
xy_all,
retain = FALSE
)))
}
preprocessing_recipe_save <- recipe_save_small_size(
final_recipe = final_recipe,
xy_all = xy_all
)
# Check number of predictors (to later decide standard or multiple regression)
# To load the prepared training data into a variable juice() is used.
# It extracts the data from the xy_recipe object.
preprocessing_recipe_prep <- recipes::prep(final_recipe, xy_all)
nr_predictors <- recipes::juice(preprocessing_recipe_prep)
nr_predictors <- length(nr_predictors)
####### NEW ENVIRONMENT
model_save_small_size <- function(xy_all, final_recipe, results_split_parameter, model, nr_predictors) {
env_final_model <- new.env(parent = globalenv())
env_final_model$xy_all <- xy_all
env_final_model$final_recipe <- final_recipe
env_final_model$penalty_mode <- statisticalMode(results_split_parameter$penalty)
env_final_model$mixture_mode <- statisticalMode(results_split_parameter$mixture)
env_final_model$model <- model
env_final_model$nr_predictors <- nr_predictors
env_final_model$statisticalMode <- statisticalMode
env_final_model$`%>%` <- `%>%`
with(
env_final_model,
if (nr_predictors > 3) {
# Create and fit model; penalty=NULL mixture = NULL
final_predictive_model_spec <-
{
if (model == "regression") {
parsnip::linear_reg(penalty = penalty_mode, mixture = mixture_mode)
} else if (model == "logistic") {
parsnip::logistic_reg(
mode = "classification",
penalty = penalty_mode,
mixture = mixture_mode
)
}
} %>%
parsnip::set_engine("glmnet")
# Create Workflow (to know variable roles from recipes) help(workflow)
wf_final <- workflows::workflow() %>%
workflows::add_model(final_predictive_model_spec) %>%
workflows::add_recipe(final_recipe)
# Fit model
final_predictive_model <- parsnip::fit(wf_final, data = xy_all)
# Standard regression
} else if (nr_predictors == 3) {
final_predictive_model_spec <- {
if (model == "regression") {
parsnip::linear_reg(mode = "regression") %>%
parsnip::set_engine("lm")
} else if (model == "logistic") {
parsnip::logistic_reg(mode = "classification") %>%
parsnip::set_engine("glm")
}
}
# Create Workflow (to know variable roles from recipes) help(workflow)
wf_final <- workflows::workflow() %>%
workflows::add_model(final_predictive_model_spec) %>%
workflows::add_recipe(final_recipe)
# Fit model
final_predictive_model <- parsnip::fit(wf_final, data = xy_all)
}
)
}
final_predictive_model <- model_save_small_size(xy_all, final_recipe, results_split_parameter, model, nr_predictors)
##### NEW ENVIRONMENT END
########## DESCRIBING THE MODEL ##########
############################################
x_name_description <- paste("x word_embeddings = ", x_name)
x_append_names_description <- paste("x_append = ", x_append_names)
y_name_description <- paste("y = ", y_name)
cv_method_description <- paste("cv_method = ", deparse(cv_method))
outside_folds_description <- paste("outside_folds = ", deparse(outside_folds))
outside_strata_y_description <- paste("outside_strata_y = ", deparse(outside_strata_y))
inside_folds_description <- paste("inside_folds = ", deparse(inside_folds))
inside_strata_y_description <- paste("inside_strata_y = ", deparse(inside_strata_y))
penalty_setting <- paste("penalty_setting = ", deparse(penalty))
mixture_setting <- paste("mixture_setting = ", deparse(mixture))
preprocess_PCA_setting <- paste("preprocess_PCA_setting = ", deparse(preprocess_PCA))
first_n_predictors_setting <- paste("first_n_predictors_setting = ", deparse(first_n_predictors))
# Saving the final mtry and min_n used for the final model.
penalty_description <- paste("penalty in final model = ", deparse(statisticalMode(results_split_parameter$penalty)))
penalty_fold_description <- paste("penalty in each fold = ", deparse(results_split_parameter$penalty))
mixture_description <- paste("mixture in final model = ", deparse(statisticalMode(results_split_parameter$mixture)))
mixture_fold_description <- paste("mixture in each fold = ", deparse(results_split_parameter$mixture))
preprocess_PCA_description <- paste(
"preprocess_PCA in final model = ",
deparse(statisticalMode(results_split_parameter$preprocess_PCA))
)
preprocess_PCA_fold_description <- paste(
"preprocess_PCA in each fold = ",
deparse(results_split_parameter$preprocess_PCA)
)
first_n_predictors_description <- paste(
"first_n_predictors in final model = ",
deparse(statisticalMode(results_split_parameter$first_n_predictors))
)
first_n_predictors_fold_description <- paste(
"first_n_predictors in each fold = ",
deparse(results_split_parameter$first_n_predictors)
)
preprocess_step_center <- paste("preprocess_step_center_setting = ", deparse(preprocess_step_center))
preprocess_step_scale <- paste("preprocess_step_scale_setting = ", deparse(preprocess_step_scale))
impute_missing <- paste("impute_missing_setting = ", deparse(impute_missing))
# Getting time and date
T2_textTrainRegression <- Sys.time()
Time_textTrainRegression <- T2_textTrainRegression - T1_textTrainRegression
Time_textTrainRegression <- sprintf(
"Duration to train text: %f %s",
Time_textTrainRegression,
units(Time_textTrainRegression)
)
Date_textTrainRegression <- Sys.time()
time_date <- paste(Time_textTrainRegression,
"; Date created: ", Date_textTrainRegression,
sep = "",
collapse = " "
)
# Describe model; adding user's-description + the name of the x and y
model_description_detail <- c(
x_name_description,
x_append_names_description,
y_name_description,
cv_method_description,
outside_folds_description,
outside_strata_y_description,
inside_folds_description,
inside_strata_y_description,
penalty_setting,
penalty_description,
penalty_fold_description,
mixture_setting,
mixture_description,
mixture_fold_description,
preprocess_step_center,
preprocess_step_scale,
preprocess_PCA_setting,
preprocess_PCA_description,
preprocess_PCA_fold_description,
first_n_predictors_setting,
first_n_predictors_description,
first_n_predictors_fold_description,
impute_missing,
embedding_description,
model_description,
time_date
)
###### Saving and arranging output ######
##########################################
if (model == "regression") {
if (save_output == "all") {
final_results <- list(
predy_y, preprocessing_recipe_save, final_predictive_model, model_description_detail,
collected_results[[2]]
)
names(final_results) <- c(
"predictions", "final_recipe", "final_model", "model_description",
"results"
)
} else if (save_output == "only_results_predictions") {
final_results <- list(
predy_y, model_description_detail,
collected_results[[2]]
)
names(final_results) <- c("predictions", "model_description", "results")
} else if (save_output == "only_results") {
final_results <- list(
model_description_detail,
collected_results[[2]]
)
names(final_results) <- c("model_description", "results")
}
} else if (model == "logistic") {
if (save_output == "all") {
final_results <- list(
predy_y, preprocessing_recipe_save, final_predictive_model, model_description_detail,
collected_results$roc_curve_data, collected_results$roc_curve_plot, collected_results$fisher,
collected_results$chisq, collected_results$results_collected
)
names(final_results) <- c(
"predictions", "final_recipe", "final_model", "model_description",
"roc_curve_data", "roc_curve_plot", "fisher", "chisq", "results_metrics"
)
final_results
} else if (save_output == "only_results_predictions") {
final_results <- list(
predy_y, model_description_detail,
collected_results$roc_curve_data, collected_results$roc_curve_plot, collected_results$fisher,
collected_results$chisq, collected_results$results_collected
)
names(final_results) <- c(
"predictions", "model_description",
"roc_curve_data", "roc_curve_plot", "fisher", "chisq", "results_metrics"
)
final_results
} else if (save_output == "only_results") {
final_results <- list(
model_description_detail,
collected_results$roc_curve_data, collected_results$roc_curve_plot, collected_results$fisher,
collected_results$chisq, collected_results$results_collected
)
names(final_results) <- c(
"model_description",
"roc_curve_data", "roc_curve_plot", "fisher", "chisq", "results_metrics"
)
final_results
}
final_results
}
expect_equal(final_results$results$estimate[[1]], 0.3590022, tolerance = 0.00001)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.