R/nls_peak.R

Defines functions nls_peak

Documented in nls_peak

#' Uses nlsLM to fit 2p peak model
#'
#' @param x An integer vector of the x-coordinates of the histogram (after filtering out low coverage errors and high coverage kmers).
#' @param y A numeric vector of the y-coordinates of the histogram (after filtering out low coverage errors and high coverage kmers).
#' @param k An integer corresponding to the kmer length.
#' @param p An integer corresponding to the ploidy.
#' @param top An integer corresponding to the topology.
#' @param estKmercov A numeric corresponding to the estimated average kmer coverage of the polyploid genome.
#' @param estLength A numeric corresponding to the estimated polyploid genome length.
#' @param max_iterations An integer corresponding to the maximum number iterations to use for nlsLM.
#' @return An nlsLM model object with some additional components.
#' @export
nls_peak<-function(x, y, k, p, top, estKmercov, estLength, max_iterations) {
  #Initiate variables
  model = NULL
  best_deviance = Inf
  d_min = 0
  if (d_init!=-1) {
    d_initial = d_init
  } else {
    d_initial = 0.10
  }
  d_max = 1
  r_min = 0.00001
  if (top==0) {
    p_to_num_r = c(0, 1, 2, 4, 6, 10)
  } else {
    p_to_num_r = c(0, 1, 2, 3, 4, 5)
  }
  num_r = p_to_num_r[p]
  r_max = 1
  kmercov_min = 0
  kmercov_initial = estKmercov
  kmercov_max = Inf
  bias_min = 0
  bias_initial = 0.5
  bias_max = Inf
  length_min = 0
  length_initial = estLength/p
  length_max = Inf

  #Determine what formula to use, based on p
  if (p==1) {
    r_text = ""
  } else {
    r_text = paste(paste(lapply(1:(num_r), function(x) paste("r", as.character(x), sep="")), collapse=", "), ", ")
  }
  x = x[1:min(2000,length(x))]
  y = y[1:min(2000,length(y))]
  y_transform = as.numeric(x)**transform_exp*as.numeric(y)
  formula = as.formula(paste("y_transform ~ x**transform_exp*length*predict",p,"_",top,"(",r_text, "k, d, kmercov, bias, x)",sep=""))

  if (VERBOSE) {cat("trying nlsLM algorithm (Levenberg-Marquardt)\n")}

  if (r_inits!=-1) {
    r_initials = unlist(lapply(strsplit(r_inits,","),as.numeric))
    if (length(r_initials)!=num_r) {
      stop("Incorrect number of initial rates supplied.")
    }
    r_initials_list = list(r_initials)
  } else {
    r_initials_list = list(rep(0.001, num_r), 0.001*(1:num_r), 0.001*(num_r:1), rep(0.01, num_r), 0.01*(1:num_r), 0.01*(num_r:1))
  }

  for (r_initials in r_initials_list) {

    model1 = NULL
    r_start = vector("list", num_r)
    if (p > 1) {
      names(r_start) = paste("r", 1:(num_r), sep="")
      for (i in 1:(num_r)) {
        r_start[[paste("r",i,sep="")]] = r_initials[i]
      }
    }

    try(model1 <- nlsLM(formula = formula,
                       start   = c(list(d = d_initial), r_start, list(kmercov = kmercov_initial, bias = bias_initial, length = length_initial)),
                       lower   = c(c(d_min), rep(r_min, num_r), c(kmercov_min, bias_min, length_min)),
                       upper   = c(c(d_max), rep(r_max, num_r), c(kmercov_max, bias_max, length_max)),
                       control = list(minFactor=1e-12, maxiter=max_iterations, factor=0.1), trace=TRACE_FLAG), silent = TRUE)

    if (!is.null(model1)) {
      current_deviance = model1$m$deviance()
      #cat("Model deviance: ", current_deviance, "\n")
      if (current_deviance < best_deviance) {
        model = model1
        best_deviance = current_deviance
      }
    } else {
      #print("Model did not converge.")
    }

  }

  if (!is.null(model))
  {
    model_sum    = summary(model)
    model$p      = p
    model$top = top
    if (p==1) {
      model$hets = list(c(0, 0))
    } else {
      model$hets = lapply(1:(num_r), function(x) min_max1(model_sum$coefficients[paste('r', x, sep=""),]))
    }
    #model$het = c(1-Reduce("*", 1-unlist(lapply(model$hets, '[[', 1))), 1-Reduce("*", 1-unlist(lapply(model$hets, '[[', 2))))
    model$het = c(sum(sapply(model$hets, '[[', 1)), sum(sapply(model$hets, '[[', 2)))
    model$homo = 1-model$het
    model$dups   = min_max(model_sum$coefficients['bias',])
    model$kcov   = min_max(model_sum$coefficients['kmercov',])
    model$mlen   = min_max(model_sum$coefficients['length',])
    model$md     = min_max1(model_sum$coefficients['d',])
    if (p==1) {
      model$ahets = list(c(0))
    } else {
      model$ahets = lapply(1:(num_r), function(x) model_sum$coefficients[paste('r', x, sep=""),][[1]])
    }
    #model$ahet = 1-Reduce("*", 1-unlist(model$ahets))
    model$ahet = Reduce("+", model$ahets)
    model$ahomo = 1-model$ahet
    model$adups = model_sum$coefficients['bias',][[1]]
    model$akcov = model_sum$coefficients['kmercov',][[1]]
    model$amlen = model_sum$coefficients['length',][[1]]
    model$amd   = model_sum$coefficients['d',][[1]]
  }

  #print(model)
  #print(model$m$deviance())

  return(model)
}
PauloMoraMartinez/Genomescope2.0_ documentation built on April 5, 2022, 12:02 a.m.