Description Usage Arguments Value Examples
The 'panel' parameter allows different type of visualisation for output object from PhosR. 'panel = 0' is used to create a 2*2 panel of plots including the following. 'panel = 1' is used to visualise percentage of quantification after imputataion. 'panel = 2' is used to visualise dendrogram (hierarchical clustering) of the input matrix. 'panel = 3' is used to visualise abundance level of samples from the input matrix. 'panel = 4' is used to show PCA plot
1  | 
mat | 
 A p by n matrix, where p is the number of phosphosites and n is the number of samples.  | 
cols | 
 A vector of colours to be used in the plot. The length should be equal to the columns of the mat.  | 
labels | 
 A vector of sample names. Used the label points in PCA plot (panel=4)  | 
panel | 
 A numeric value (0-4) to choose the plot type. See description for details.  | 
... | 
 Plotting parameters for base plots  | 
A graphical plot
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69  | # Imputation
data('phospho.cells.Ins.sample')
grps = gsub('_[0-9]{1}', '', colnames(phospho.cells.Ins))
phospho.cells.Ins.filtered <- selectGrps(phospho.cells.Ins, grps, 0.5, n=1)
set.seed(123)
phospho.cells.Ins.impute <-
    scImpute(
    phospho.cells.Ins.filtered,
    0.5,
    grps)[,colnames(phospho.cells.Ins.filtered)]
set.seed(123)
phospho.cells.Ins.impute[,1:5] <- ptImpute(phospho.cells.Ins.impute[,6:10],
phospho.cells.Ins.impute[,1:5], percent1 = 0.6, percent2 = 0, paired = FALSE)
phospho.cells.Ins.ms <- medianScaling(phospho.cells.Ins.impute,
                                    scale = FALSE)
cols <- rep(c('#ED4024', '#7FBF42', '#3F61AD', '#9B822F'), each=6)
par(mfrow=c(1,2))
plotQC(phospho.cells.Ins.filtered,
        labels=colnames(phospho.cells.Ins.filtered),
        panel = 1, cols = cols)
plotQC(phospho.cells.Ins.ms,
        labels=colnames(phospho.cells.Ins.ms),
        panel = 1, cols = cols)
# Batch correction
data('phospho_L6_ratio')
data('SPSs')
grps = gsub('_.+', '', colnames(phospho.L6.ratio))
# Cleaning phosphosite label
phospho.site.names = rownames(phospho.L6.ratio)
L6.sites = gsub(' ', '', sapply(strsplit(rownames(phospho.L6.ratio), '~'),
                                function(x){paste(toupper(x[2]), x[3], '',
                                                sep=';')}))
phospho.L6.ratio = t(sapply(split(data.frame(phospho.L6.ratio), L6.sites),
                            colMeans))
phospho.site.names = split(phospho.site.names, L6.sites)
# Construct a design matrix by condition
design = model.matrix(~ grps - 1)
# phosphoproteomics data normalisation using RUV
ctl = which(rownames(phospho.L6.ratio) %in% SPSs)
phospho.L6.ratio.RUV = RUVphospho(phospho.L6.ratio, M = design, k = 3,
                                ctl = ctl)
cs = rainbow(length(unique(grps)))
colorCodes = sapply(grps, switch, AICAR=cs[1], Ins=cs[2], AICARIns=cs[3])
# plot after batch correction
par(mfrow=c(1,2))
plotQC(phospho.L6.ratio, panel = 2, cols=colorCodes)
plotQC(phospho.L6.ratio.RUV, cols=colorCodes,
        labels = colnames(phospho.L6.ratio),
        panel=2, ylim=c(-20, 20), xlim=c(-30, 30))
par(mfrow=c(1,2))
plotQC(phospho.L6.ratio, panel = 4, cols=colorCodes,
        labels = colnames(phospho.L6.ratio),
        main='Before Batch correction')
plotQC(phospho.L6.ratio.RUV, cols=colorCodes,
        labels = colnames(phospho.L6.ratio),
        panel=4, ylim=c(-20, 20), xlim=c(-30, 30),
        main='After Batch correction')
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.