# Copyright 2020 Penn Computing Inference Learning (PennCIL) lab
# https://penncil.med.upenn.edu/team/
# This file is part of pda
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# https://style.tidyverse.org/functions.html#naming
# https://ohdsi.github.io/Hades/codeStyle.html#OHDSI_code_style_for_R
ODAP.steps <- c('initialize','derive','estimate','synthesize')
# ODAP code notes:
# 1.) Including options for Poisson, ZT-Poisson, quasi-Poisson, ZT-quasi-Poisson, Hurdle
# - Lead site decides whether to use quasi-Poisson based on checking OD using their data. (can also return OD estimate in ODAP.initialize if desired.)
# - dist variable in each function specifies which Poisson dist to use.
# 2.) ODAP methods include option for an offset variable. This is different from ODAL code, need to take this into account
# (I think I did this correctly, but should be checked.)
# 3.) Will write separate functions for ODAH, since user can specify different sets of ipdata for
# each component of hurdle model.
## write my own ztpoisson and hurdle to avoid import: countreg, as countreg is not on CRAN...
my.ztpoisson.loglik <- function(betas, X, Y, offset){
design = as.matrix(X)
betas <- as.matrix(betas)
lp <- offset+c(design%*%betas)
lambda <- exp(lp)
sum((Y*lp - lambda - log(1-exp(-lambda)))*I(Y>0)) / length(Y[Y>0])
}
my.ztpoisson.fit <- function(X, Y, offset){
fn <- function(betas) - my.ztpoisson.loglik(betas, X, Y, offset)
res <- optim(rep(0, ncol(X)), fn, hessian=T)
return(list(b=res$par, b.var=diag(solve(res$hessian))/nrow(X)))
}
#' @useDynLib pda
#' @title ODAP initialize
#'
#' @usage ODAP.initialize(ipdata,control,config)
#' @param ipdata individual participant data
#' @param control pda control data
#' @param config local site configuration
#'
#' @references TBD
#' @return init
#' @keywords internal
ODAP.initialize <- function(ipdata, control, config){
# install.packages("countreg", repos="http://R-Forge.R-project.org")
# dist <- control$dist
family <- control$family
# if(!("time" %in% colnames(ipdata))) {
# ipdata$time <- 1
# }
if (family == "poisson") {
fit_i <- glm(outcome ~ 0+. -offset, data = ipdata, family = "poisson"(link = "log"), offset = offset)
init <- list(site = config$site_id,
site_size = nrow(ipdata),
bhat_i = fit_i$coef,
Vhat_i = diag(vcov(fit_i)),
phihat_i = 1)
}
if (family == "ztpoisson") {
# library(countreg)
# fit_i <- zerotrunc(outcome ~ 0+. -offset, data = ipdata, dist = "poisson", offset = offset)
fit_i <- my.ztpoisson.fit(ipdata[,-c(1,2)], ipdata$outcome, ipdata$offset)
init <- list(site = config$site_id,
site_size = nrow(ipdata),
bhat_i = fit_i$b, # fit_i$coefficients,
Vhat_i = fit_i$b.var, # diag(vcov(fit_i)),
phihat_i = 1)
}
if (family == "quasipoisson") {
fit_i <- glm(outcome ~ 0+. -offset, data = ipdata, family = "poisson"(link = "log"), offset =offset)
phihat_i <- sum(residuals(fit_i, type = "pearson")^2)/df.residual(fit_i)
init <- list(site = config$site_id,
site_size = nrow(ipdata),
bhat_i = fit_i$coef,
Vhat_i = diag(vcov(fit_i)*phihat_i))
}
if (family == "ztquasipoisson") {
# library(countreg)
# fit_i <- zerotrunc(outcome ~ 0+. -offset, data = ipdata, dist = "poisson", offset = offset)
# phihat_i <- sum(residuals(fit_i, type = "pearson")^2)/df.residual(fit_i)
fit_i <- my.ztpoisson.fit(ipdata[,-c(1,2)], ipdata$outcome, ipdata$offset)
lambda <- exp(c(as.matrix(ipdata[,-c(1,2)]) %*% fit_i$b))
resid <- ipdata$outcome - lambda / (1-exp(-lambda))
phihat_i <- sum(resid^2) / (nrow(ipdata)-(ncol(ipdata)-2)) # dispersion
init <- list(site = config$site_id,
site_size = nrow(ipdata),
bhat_i = fit_i$b, # fit_i$coefficients,
Vhat_i = fit_i$b.var*phihat_i) # diag(vcov(fit_i)
}
return(init)
}
#' @useDynLib pda
#' @title ODAP derivatives
#'
#' @usage ODAP.derive(ipdata,control,config)
#' @param ipdata individual participant data
#' @param control pda control data
#' @param config local site configuration
#'
#' @return derivatives list(site = config$site_id, site_size = nrow(ipdata), logL_D1 = logL_D1, logL_D2 = logL_D2)
#' @keywords internal
ODAP.derive <- function(ipdata, control, config){
family = control$family
# dist <- control$dist
# if(!("time" %in% colnames(ipdata))) {
# ipdata$time <- 1
# }
if (family == "poisson" || family == "quasipoisson") {
# data sanity check ...
px <- ncol(ipdata) - 1 # number of covariates incl. intercept
bhat <- rep(0, px)
vbhat <- rep(0, px)
for(site_i in control$sites){
init_i <- pdaGet(paste0(site_i,'_initialize'),config)
bhat <- rbind(bhat, init_i$bhat_i)
vbhat <- rbind(vbhat, init_i$Vhat_i)
}
bhat <- bhat[-1,]
vbhat <- vbhat[-1,]
betameta = apply(bhat/vbhat,2,function(x){sum(x, na.rm = T)})/apply(1/vbhat,2,function(x){sum(x, na.rm = T)})
vmeta = 1/apply(1/vbhat,2,function(x){sum(x, na.rm = T)})
bbar <- betameta
# 1st and 2nd derivatives
outcome <- ipdata$outcome
offset <- ipdata$offset
X <- as.matrix(ipdata[,-c(1,2)])
# Getting rid of first two columns in ipdata (outcome and time) to define covariate matrix
expit = function(x){1/(1 + exp(-x))}
#first order gradient
Lgradient <- function(betas, X, Y, offset){
design <- as.matrix(X)
betas <- as.matrix(betas)
t(Y - exp(offset+design%*%betas)) %*% design / length(Y)
}
#second-order gradient
Lgradient2 <- function(betas, X, offset){
design <- as.matrix(X)
betas <- as.matrix(betas)
t(- exp(offset + c(design%*%betas))*design)%*%design/nrow(X)
}
logL_D1 <- Lgradient(bbar, X, outcome, offset)
logL_D2 <- Lgradient2(bbar, X, offset)
derivatives <- list(
site = config$site_id,
site_size = nrow(ipdata),
logL_D1 = logL_D1,
logL_D2 = logL_D2)
}
if (family == "ztpoisson" || family == "ztquasipoisson") {
# data sanity check ...
px <- ncol(ipdata) - 1 # number of covariates incl. intercept
bhat <- rep(0, px)
vbhat <- rep(0, px)
for(site_i in control$sites){
init_i <- pdaGet(paste0(site_i,'_initialize'),config)
bhat <- rbind(bhat, init_i$bhat_i)
vbhat <- rbind(vbhat, init_i$Vhat_i)
}
bhat <- bhat[-1,]
vbhat <- vbhat[-1,]
betameta = apply(bhat/vbhat,2,function(x){sum(x, na.rm = T)})/apply(1/vbhat,2,function(x){sum(x, na.rm = T)})
vmeta = 1/apply(1/vbhat,2,function(x){sum(x, na.rm = T)})
bbar <- betameta
# 1st and 2nd derivatives
outcome <- ipdata$outcome
offset <- ipdata$offset
X <- as.matrix(ipdata[,-c(1,2)])
# Getting rid of first two columns in ipdata (outcome and time) to define covariate matrix
expit = function(x){1/(1 + exp(-x))}
#first order gradient
Lgradient <- function(betas, X, Y, offset){
design <- as.matrix(X)
betas <- as.matrix(betas)
lambda <- exp(offset+c(design%*%betas))
t(Y - lambda - lambda*exp(-lambda)/(1-exp(-lambda)))%*%design/length(Y)
}
#second-order gradient
Lgradient2_ <- function(betas, X, Y, offset){
design <- as.matrix(X)
betas <- as.matrix(betas)
lambda <- exp(offset+design%*%betas)
t(c(-lambda - (exp(-lambda)*lambda*(1-exp(-lambda))*(1-lambda)+exp(-2*lambda)*exp(2*design%*%betas))/(1-exp(-lambda))^2))%*%design/length(Y)
}
logL_D1 <- Lgradient(bbar, X, outcome, offset)
logL_D2 <- Lgradient2_(bbar, X, outcome, offset)
derivatives <- list(
site = config$site_id,
site_size = nrow(ipdata),
logL_D1 = logL_D1,
logL_D2 = logL_D2)
}
return(derivatives)
}
#' @useDynLib pda
#' @title PDA surrogate estimation
#'
#' @usage ODAP.estimate(ipdata,control,config)
#' @param ipdata local data in data frame (generated in \code{pda})
#' @param control PDA control
#' @param config cloud configuration
#'
#' @details construct and solve surrogate logL at the master/lead site
#' @return list(btilde = sol$par, Htilde = sol$hessian, site=control$mysite, site_size=nrow(ipdata))
#' @keywords internal
ODAP.estimate <- function(ipdata,control,config) {
family <- control$family
# dist <- control$dist
# if(!("time" %in% colnames(ipdata))) {
# ipdata$time <- 1
# }
if (family == "poisson" | family == "quasipoisson") {
# data sanity check ...
Y <- ipdata$outcome
outcome <- Y
offset <- ipdata$offset
X <- as.matrix(ipdata[,-c(1,2)])
# Getting rid of first two columns in ipdata (outcome and time) to define covariate matrix
px <- ncol(X)
######################################################
#likelihood function for Poisson regression.
Lik <- function(betas, X, Y, offset){
design <- as.matrix(X)
betas <- as.matrix(betas)
lambda <- offset+c(design%*%betas)
sum(Y*lambda - exp(lambda))/length(Y)
}
expit <- function(x){1/(1+exp(-x))}
# download derivatives of other sites from the cloud
# calculate 2nd order approx of the total logL
logL_all_D1 <- rep(0, px)
logL_all_D2 <- matrix(0, px, px)
N <- 0
for(site_i in control$sites){
derivatives_i <- pdaGet(paste0(site_i,'_derive'),config)
logL_all_D1 <- logL_all_D1 + derivatives_i$logL_D1*derivatives_i$site_size
logL_all_D2 <- logL_all_D2 + derivatives_i$logL_D2*derivatives_i$site_size
N <- N + derivatives_i$site_size
}
# initial beta
bbar <- control$beta_init # derivatives_i$b_meta
#first order gradient
Lgradient <- function(betas, X, Y, offset){
design <- as.matrix(X)
betas <- as.matrix(betas)
t(Y - exp(offset+c(design%*%betas)))%*%design/length(Y)
}
#second-order gradient
Lgradient2 <- function(betas, X, offset){
design <- as.matrix(X)
betas <- as.matrix(betas)
t(-exp(offset+c(design%*%betas))*design)%*%design/nrow(X)
}
#second-order surogate likelihood, suppose the local data are stored in Xlocal, Ylocal
# Y <- ipdata$outcome
# t <- ipdata$time
n1 <- length(Y)
logL_tilde <- function(beta){
- (Lik(beta,X, outcome, offset) + (logL_all_D1/N - Lgradient(bbar, X, outcome, offset))%*%beta+
t(beta-bbar)%*%(logL_all_D2/N - Lgradient2(bbar, X, offset))%*%(beta-bbar) / 2)
}
# optimize the surrogate logL
sol <- optim(par = bbar,
fn = logL_tilde,
# gr = logL_tilde_D1,
hessian = TRUE,
control = list(maxit=control$optim_maxit))
if (dist == "quasipoisson") {
beta_tilde <- sol$par
design <- as.matrix(X)
lambda <- exp(offset+design%*%beta_tilde)
alpha_i <- sum((Y - lambda)^2/(lambda))/(n1 - px)
surr <- list(btilde = sol$par, Htilde = sol$hessian*alpha_i, OD_est_i = alpha_i,
site=config$site_id, site_size=nrow(ipdata))
}
if (dist == "poisson") {
surr <- list(btilde = sol$par, Htilde = sol$hessian,
site=config$site_id, site_size=nrow(ipdata))
}
######################################################
}
if (family == "ztpoisson" | family == "ztquasipoisson") {
# data sanity check ...
Y <- ipdata$outcome
outcome <- Y
offset <- ipdata$offset
X <- as.matrix(ipdata[,-c(1,2)])
# Getting rid of first two columns in ipdata (outcome and time) to define covariate matrix
px <- ncol(X)
######################################################
#likelihood function for ZT-Poisson regression.
Lik <- function(betas, X, Y, offset){
design <- as.matrix(X)
betas <- as.matrix(betas)
lp <- offset+c(design%*%betas)
lambda <- exp(lp)
sum( Y*lp - lambda - log(1-exp(-lambda)))/length(Y) # - lgamma(Y+1)
}
expit <- function(x){1/(1+exp(-x))}
# download derivatives of other sites from the cloud
# calculate 2nd order approx of the total logL
logL_all_D1 <- rep(0, px)
logL_all_D2 <- matrix(0, px, px)
N <- 0
for(site_i in control$sites){
derivatives_i <- pdaGet(paste0(site_i,'_derive'),config)
logL_all_D1 <- logL_all_D1 + derivatives_i$logL_D1*derivatives_i$site_size
logL_all_D2 <- logL_all_D2 + derivatives_i$logL_D2*derivatives_i$site_size
N <- N + derivatives_i$site_size
}
# initial beta
bbar <- control$beta_init # derivatives_i$b_meta
#first order gradient
Lgradient <- function(betas, X, Y, offset){
design <- as.matrix(X)
betas <- as.matrix(betas)
lambda <- exp(offset+c(design%*%betas))
t(Y - lambda - lambda*exp(-lambda)/(1-exp(-lambda)))%*%design/length(Y)
}
#second-order gradient
Lgradient2_ <- function(betas, X, Y, offset){
design <- as.matrix(X)
betas <- as.matrix(betas)
lambda <- exp(offset+c(design%*%betas))
t(c(-lambda - (exp(-lambda)*lambda*(1-exp(-lambda))*(1-lambda)+exp(-2*lambda)*lambda^2)/(1-exp(-lambda))^2))%*%design/length(Y)
}
#second-order surogate likelihood, suppose the local data are stored in Xlocal, Ylocal
# Y <- ipdata$outcome
# t <- ipdata$time
n1 <- length(Y)
logL_tilde <- function(beta){
- (Lik(beta, X, outcome, offset) + (logL_all_D1/N - Lgradient(bbar, X, outcome, offset))%*%beta +
t(beta-bbar)%*%(logL_all_D2/N - Lgradient2_(bbar, X, outcome, offset))%*%(beta-bbar) / 2)
}
# optimize the surrogate logL
sol <- optim(par = bbar,
fn = logL_tilde,
# gr = logL_tilde_D1,
hessian = TRUE,
control = list(maxit=control$optim_maxit))
if (dist == "ztquasipoisson") {
beta_tilde <- sol$par
design <- as.matrix(X)
lambda <- exp(offset+c(design%*%beta_tilde))
alpha_i <- sum((Y - lambda/(1 - exp(-lambda)))^2/((lambda + lambda^2)/(1-exp(-lambda)) -
lambda^2/(1-exp(-lambda))^2))/(n1 - px)
surr <- list(btilde = sol$par, Htilde = sol$hessian*alpha_i, OD_est = alpha_i,
site=config$site_id, site_size=nrow(ipdata))
}
if (dist == "ztpoisson") {
surr <- list(btilde = sol$par, Htilde = sol$hessian,
site=config$site_id, site_size=nrow(ipdata))
}
######################################################
}
return(surr)
}
ODAP.synthesize <- function(ipdata, control, config) {
family <- control$family
px <- length(control$risk_factor)
K <- length(control$sites)
btilde_wt_sum <- rep(0, px)
wt_sum <- rep(0, px)
for(site_i in control$sites){
surr_i <- pdaGet(paste0(site_i,'_estimate'),config)
btilde_wt_sum <- btilde_wt_sum + surr_i$Htilde %*% surr_i$btilde
wt_sum <- wt_sum + surr_i$Htilde
}
# inv-Var weighted average est, and final Var = average Var-tilde
btilde <- solve(wt_sum, btilde_wt_sum)
Vtilde <- solve(wt_sum) * K
message("all surrogate estimates synthesized, no need to broadcast! ")
return(list(btilde = btilde,
Vtilde = Vtilde))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.