View source: R/POLYFUN_munge_summ_stats.R
| POLYFUN_munge_summ_stats | R Documentation |
Munge summary statistics using the PolyFun implementation of the LDSSC
munge sum stats python script (munge_polyfun_sumstats.py).
NOTE: This script is kept only for documentation purposes.
Please use
MungeSumstats
instead as it is far more robust.
POLYFUN_munge_summ_stats( fullSS_path, polyfun_path = NULL, locus_dir = tempdir(), sample_size = NULL, min_INFO = 0, min_MAF = 0.001, chi2_cutoff = 30, keep_hla = FALSE, no_neff = FALSE, force_new_munge = FALSE, conda_env = "echoR_mini", verbose = TRUE )
fullSS_path |
Path to the full summary statistics file (GWAS or QTL) that you want to fine-map. It is usually best to provide the absolute path rather than the relative path. |
polyfun_path |
[Optional] Path to PolyFun directory where all the
executables and reference data are stored.
Will be automatically installed if set to |
locus_dir |
Locus-specific directory to store results in. |
conda_env |
Conda environment to use. |
verbose |
Print messages. |
fullSS_path <- echodata::example_fullSS()
munged_path <- POLYFUN_munge_summ_stats(fullSS_path=fullSS_path)
Other polyfun:
POLYFUN_compute_priors(),
POLYFUN_download_ref_files(),
POLYFUN_find_folder(),
POLYFUN_finemapper(),
POLYFUN_gather_annotations(),
POLYFUN_gather_ldscores(),
POLYFUN_help(),
POLYFUN_import_priors(),
POLYFUN_initialize(),
POLYFUN_prepare_snp_input(),
POLYFUN_run_ldsc(),
POLYFUN()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.