estReg_single: Bayesian stimation in nonlinear regression models

Description Usage Arguments Value

Description

Bayesian estimation of the parameters of the mixed nonlinear regression model y_j= f(φ, t_j) + ε_j, ε_j~N(0,γ^2*s^2(t_j).

Usage

1
estReg_single(t, y, prior, start, fODE, sVar, len = 1000, mod = "Gompertz")

Arguments

t

vector of observation times

y

vector of the M trajectories

prior

list of prior parameters - list(mu, Omega, alpha, beta)

start

list of starting values

fODE

regression function

sVar

variance function

len

number of iterations of the MCMC algorithm

mod

model out of Gompertz, Richards, logistic, Weibull, only used instead of fODE

propSd

proposal standard deviation of phi is |mu|*propSd

Value

phi

estimator of φ

gamma2

estimator of γ^2


SimoneHermann/hierRegSDE documentation built on May 9, 2019, 1:46 p.m.