Description Usage Arguments Value
Bayesian estimation of the parameters of the mixed nonlinear regression model y_j= f(φ, t_j) + ε_j, ε_j~N(0,γ^2*s^2(t_j).
1 | estReg_single(t, y, prior, start, fODE, sVar, len = 1000, mod = "Gompertz")
|
t |
vector of observation times |
y |
vector of the M trajectories |
prior |
list of prior parameters - list(mu, Omega, alpha, beta) |
start |
list of starting values |
fODE |
regression function |
sVar |
variance function |
len |
number of iterations of the MCMC algorithm |
mod |
model out of Gompertz, Richards, logistic, Weibull, only used instead of fODE |
propSd |
proposal standard deviation of phi is |mu|*propSd |
phi |
estimator of φ |
gamma2 |
estimator of γ^2 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.