Description Usage Arguments Details Value References Examples
Bayesian estimation of the random effects φ_j in the mixed SDE dY_i(t)= b(φ_i, t, Y_i(t))dt + γ s(t, Y_i(t)) dW_i(t), , φ_i~N(μ, Ω), i=1,...,n and the parameters μ, Ω, γ^2.
1 2 3 |
t |
vector of observation times |
y |
matrix or list of the n trajectories |
prior |
list of prior parameters - list(m, v, priorOmega, alpha, beta), priorOmega=list(alpha, beta) if Omega="diag", otherwise prior matrix of Wishart distribution |
start |
list of starting values |
bSDE |
b(phi, t, x) drift function |
sVar |
variance function s^2 |
ipred |
which of the n trajectories is the one to be predicted |
cut |
the index how many of the ipred-th series are used for estimation |
len |
number of iterations of the MCMC algorithm - chain length |
Omega |
structure of the variance matrix Omega of the random effects, diagonal matrix, otherwise inverse wishart distributed |
mod |
model out of Gompertz, Richards, logistic, Weibull, Paris, Paris2, only used instead of bSDE |
modVar |
default value is sVar(t,x)=1, if "AR": sVar(t,x)=x |
propPar |
proposal standard deviation of phi is |start$mu|*propPar |
Simulation from the posterior distribution of the random effect from n independent trajectories of the SDE (the Brownian motions W1,...,Wn are independent).
phi |
samples from posterior of φ |
mu |
samples from posterior of μ |
Omega |
samples from posterior of Ω |
gamma2 |
samples from posterior of γ^2 |
Hermann et al. (2015)
1 2 3 4 5 6 7 8 9 10 11 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.