Description Usage Arguments Value Examples
Bayesian prediction in the mixed SDE dY_j(t)= b(φ_j, t, Y_j(t))dt + γ s(t, Y_j(t)) dW_j(t), , φ_j~N(μ, Ω).
1 | predSDE(tau, samples, last, bSDE, sVar, cand, mod = "Gompertz", modVar = "")
|
tau |
vector of times which are predicted |
samples |
list of samples from the posterior |
last |
last observation - staring point for the prediction of Markov chain |
bSDE |
drift function |
sVar |
variance function |
cand |
vector of candidates for trajection sampling |
mod |
model out of Gompertz, Richards, logistic, Weibull, only used instead of bSDE |
modVar |
model for the variance structure |
matrix of predictions in t
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | mod <- "Gompertz"
bSDE <- getFun("SDE", mod)
mu <- getPar("SDE", mod, "truePar")
n <- 5
parameters <- defaultPar(mu, n)
y <- drawData("SDE", bSDE, parameters)
t <- parameters$t
prior <- getPrior(mu, parameters$gamma2)
start <- getStart(mu, n)
chains <- estSDE(t, y, prior, cut = 50, ipred = 1, start, bSDE, len = 5000)
ind <- seq(1001, 5000, by = 4)
samples <- list(phi = sapply(1:length(mu), function(i) phi = phi_ij(chains$phi, 1, i))[ind, ], gamma2 = chains$gamma2[ind])
prediction <- predSDE(t[50:101], samples, y[1,50], bSDE, cand = seq(-2, 2, length = 1000))
plot(t[51:101], y[1,51:101], ylim = range(y[1,51:101]) + c(0, 1))
lines(t[51:101], apply(prediction, 1, quantile, 0.025), col = 3)
lines(t[51:101], apply(prediction, 1, quantile, 0.975), col = 3)
lines(t[51:101], apply(prediction, 1, mean), col = 2)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.