Description Usage Arguments Value Examples
Bayesian estimation of the random effects φ_j in the mixed nonlinear regression model y_{ij}= f(φ_j, t_{ij}) + ε_{ij}, ε_{ij}~N(0,γ^2*s^2(t_{ij}), φ_j~N(μ, Ω) and the parameters μ, Ω, γ^2.
1 2 3  | 
t | 
 vector of observation times  | 
y | 
 matrix of the M trajectories  | 
prior | 
 list of prior parameters - list(m, v, priorOmega, alpha, beta)  | 
start | 
 list of starting values  | 
fODE | 
 regression function  | 
sVar | 
 variance function  | 
ipred | 
 which of the M trajectories is the one to be predicted  | 
cut | 
 the index how many of the ipred-th series are used for estimation  | 
len | 
 number of iterations of the MCMC algorithm  | 
Omega | 
 structure of the variance matrix Omega of the random effects, diagonal matrix, otherwise inverse wishart distributed  | 
mod | 
 model out of Gompertz, Richards, logistic, Weibull, only used instead of fODE  | 
propPar | 
 proposal standard deviation of phi is |start$mu|*propPar  | 
phi | 
 samples from posterior of φ  | 
mu | 
 samples from posterior of μ  | 
Omega | 
 samples from posterior of Ω  | 
gamma2 | 
 samples from posterior of γ^2  | 
1 2 3 4 5 6 7 8 9 10 11 12  | mod <- "Gompertz"
fODE <- getFun("ODE", mod)
mu <- getPar("ODE", mod, "truePar")
n <- 5
parameters <- defaultPar(mu, n)
y <- drawData("ODE", fODE, parameters)
t <- parameters$t
prior <- getPrior(mu, parameters$gamma2)
start <- getStart(mu, n)
chains <- estReg(t, y, prior=prior, start=start, fODE=fODE)
plot(phi_ij(chains$phi, 1, 1), type="l")
plot(chains$gamma, type="l"); abline(h=parameters$gamma2, col=2)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.