estSDE_single: Bayesian stimation in mixed stochastic differential equations

Description Usage Arguments Value

Description

Bayesian estimation of the parameters in the mixed SDE dY(t)= b(φ, t, Y(t))dt + γ s(t, Y(t)) dW(t).

Usage

1
2
estSDE_single(t, X, prior, start, bSDE, sVar, len = 1000, mod = "Gompertz",
  modVar = "")

Arguments

t

vector of observation times

X

vector of the M trajectories

prior

list of prior parameters - list(mu, Omega, alpha, beta)

start

list of starting values

sVar

variance function

len

number of iterations of the MCMC algorithm

mod

model out of Gompertz, Richards, logistic, Weibull, only used instead of fODE

modVar

default value is sVar(t,x)=1, if "AR": sVar(t,x)=x

fODE

regression function

propSd

proposal standard deviation of phi is |mu|*propSd

Value

phi

estimator of φ

gamma2

estimator of γ^2


SimoneHermann/hierRegSDE documentation built on May 9, 2019, 1:46 p.m.