predReg: Bayesian prediction in mixed nonlinear regression models

Description Usage Arguments Value

Description

Bayesian prediction in the mixed nonlinear regression model y_{ij}= f(φ_j, t_{ij}) + ε_{ij}, ε_{ij}~N(0,γ^2*s^2(t_{ij}), φ_j~N(μ, Ω).

Usage

1
predReg(t, samples, fODE, sVar, cand, len = 1000, mod = "Gompertz")

Arguments

t

vector of times which are predicted

samples

list of samples from the posterior

fODE

regression function

sVar

variance function

cand

vector of candidates for trajection sampling

len

number of samples from the predictive distribution

mod

model out of Gompertz, Richards, logistic, Weibull, only used instead of fODE

Value

matrix of predictions in t


SimoneHermann/hierRegSDE documentation built on May 9, 2019, 1:46 p.m.