#' coxph model with backward elimination using p value with threshold 0.05
#'
#'
#' @param r a numeric value, a seed to run this method
#' @param data a dataframe, the data used to performance this survival model
#' @param cvK a numeric value, cross-validation fold
#' @param fitform_ogl a Surv object from package survival, the survival function
#' @param formula1 a Surv object from package survival, to caulculate a version of the brier score, details please check package pec
#' @param formula2 a Surv object from package survival, to caulculate a version of the brier score, details please check package pec
#' @param formula3 a Surv object from package survival, to caulculate a version of the brier score, details please check package pec
#' @param formula4 a Surv object from package survival, to caulculate a version of the brier score, details please check package pec
#' @param timess a numeric vector of length 15, contains time points to get the time-dependent AUC values
#' @return a data.frame with allevaluation measurements in all columns and rows are each fold results from cross-validation
#'
#' @examples
#' data("exampledt2", package = "SurvBenchmark")
#'
#' xnam <- paste(colnames(veteran)[c(1,2,5,6,7,8)], sep="")
#' form=as.formula(paste("survival::Surv(time, status)~ ", paste(xnam, collapse= "+")))
#' fitform_ogl=form
#' formula1=fitform_ogl
#' formula2=fitform_ogl
#' formula3=survival::Surv(time,status)~1
#' formula4=survival::Surv(time,status)~1
#' timess=seq(as.numeric(summary(veteran$time)[2]),as.numeric(summary(veteran$time)[5]),(as.numeric(summary(veteran$time)[5])-as.numeric(summary(veteran$time)[2]))/14)
#' want=bw_cox1_fun(1,veteran,5,fitform_ogl,formula1,formula2,formula3, formula4, timess);
#' @export
bw_cox2_fun=function(r,data,cvK,fitform_ogl,formula1,formula2,formula3, formula4, timess){
if (! is.numeric(r)) stop("Input seed is wrong")
if (! is.numeric(cvK)) stop("Input cross-validation fold number is wrong")
if (is.null(dim(data))) stop("Input data is wrong")
if (length(timess)!=15) stop("Wrong time vector length")
if (class(timess)!= "numeric") stop("Wrong time vector type")
set.seed(r)
print(r)
hc_acc5 = c()
bc_acc5=c()
unoc_acc5=c()
ghc_acc5=c()
bs1=c()
bs2=c()
bs3=c()
bs4=c()
bs5=c()
bs6=c()
auc1=auc2=auc3=auc4=auc5=auc6=auc7=auc8=auc9=auc10=auc11=auc12=auc13=auc14=auc15=auc=c()
cvSets = cvFolds(nrow(data), cvK) # permute all the data, into 5 folds
for (j in 1:cvK) {
print(j)
test_id = cvTools::cvSets$subsets[cvSets$which == j]
test = data[test_id, ]
train = data[-test_id, ]
original_cox1=rms::cph(fitform_ogl,x=TRUE,y=TRUE,data=train)
z<-rms::fastbw(original_cox1, rule="p",sls=.05)
if(rlang::is_empty(z$names.kept)){coxx=survival::coxph(survival::Surv(time,status)~1,data = train)} else{
coxx=survival::coxph(as.formula(paste("survival::Surv(time,status)~",paste(z$names.kept, collapse = "+"),sep = "")),data = train)}
predd<-predict(object=coxx,newdata=test,type="risk")
#predd<-predictSurvProb(original_cox1,newdata=test,times=seq(365,365*15,365))
#harrel cindex
harrelC1 <- Hmisc::rcorr.cens(-predd,with(test,survival::Surv(time,status)))
hc_acc5[j]<-harrelC1["C Index"]
#begg cindex
lp<- predict(coxx)
lpnew <- predict(coxx, newdata=test)
Surv.rsp <- survival::Surv(train$time, train$status)
Surv.rsp.new <- survival::Surv(test$time, test$status)
bc_acc5[j] <- survAUC::BeggC(Surv.rsp, Surv.rsp.new,lp, lpnew)
#uno cindex
unoc_acc5[j]<-survAUC::UnoC(Surv.rsp, Surv.rsp.new, lpnew)
#gh cindex
ghc_acc5[j]<-survAUC::GHCI(lpnew)
#br
briers1 <- survAUC::predErr(Surv.rsp, Surv.rsp.new, lp, lpnew,times=test$time, type = "brier", int.type = "unweighted")$error
bs1[j]<-sum(na.omit(briers1))
briers2<-survAUC::predErr(Surv.rsp, Surv.rsp.new, lp, lpnew,times=test$time, type = "brier", int.type = "weighted")$error
bs2[j]<-sum(na.omit(briers2))
ibsfun1=purrr::possibly(function(modell){
briers3 <- pec::pec(list("cox1"=modell),data=test,formula=formula1,cens.model="cox")
return(crps(briers3)[2])
},otherwise = NA)
bs3[j]<-ibsfun1(coxx)
ibsfun2=purrr::possibly(function(modell){
briers4 <- pec::pec(list("cox1"=modell),data=test,formula=formula2,cens.model="marginal")
return(crps(briers4)[2])
},otherwise = NA)
bs4[j]<-ibsfun2(coxx)
ibsfun3=purrr::possibly(function(modell){
briers5 <- pec::pec(list("cox1"=modell),data=test,formula=formula3,cens.model="cox")
return(crps(briers5)[2])
},otherwise = NA)
bs5[j]<-ibsfun3(coxx)
ibsfun4=purrr::possibly(function(modell){
briers6 <- pec::pec(list("cox1"=modell),data=test,formula=formula4,cens.model="marginal")
return(crps(briers6)[2])
},otherwise = NA)
bs6[j]<-ibsfun4(coxx)
#time-dependent auc
times <- timess
AUC_CD <- survAUC::AUC.uno(Surv.rsp, Surv.rsp.new, lpnew, times)
auc1[j]=AUC_CD$auc[1]
auc2[j]=AUC_CD$auc[2]
auc3[j]=AUC_CD$auc[3]
auc4[j]=AUC_CD$auc[4]
auc5[j]=AUC_CD$auc[5]
auc6[j]=AUC_CD$auc[6]
auc7[j]=AUC_CD$auc[7]
auc8[j]=AUC_CD$auc[8]
auc9[j]=AUC_CD$auc[9]
auc10[j]=AUC_CD$auc[10]
auc11[j]=AUC_CD$auc[11]
auc12[j]=AUC_CD$auc[12]
auc13[j]=AUC_CD$auc[13]
auc14[j]=AUC_CD$auc[14]
auc15[j]=AUC_CD$auc[15]
auc[j]=AUC_CD$iauc
}
want=cbind.data.frame(hc_acc5,bc_acc5,unoc_acc5,ghc_acc5,bs1,bs2,bs3,bs4,bs5,bs6,auc1,auc2,auc3,auc4,auc5,auc6,auc7,auc8,auc9,auc10,auc11,auc12,auc13,auc14,auc15,auc)
return(want)}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.