####################################################################################################
#
#
# An expanded example "How-to" script illustrating the use of PLSR modeling to develop a
# spectra-trait algorithm to estimate leaf nitrogen content with leaf-level spectroscopy data.
# The example is built from published data source from the EcoSIS spectral database. This example
# illustrates how to select the optimal number of components and quantify model prediction
# uncertainty based on permutation approaches
#
# Spectra and trait data source:
# https://ecosis.org/package/leaf-spectra-of-36-species-growing-in-rosa-rugosa-invaded-coastal-grassland-communities-in-belgium
#
# Notes:
# * Questions, comments, or concerns can be sent to sserbin@bnl.gov
# * Code is provided under GNU General Public License v3.0
#
####################################################################################################
#--------------------------------------------------------------------------------------------------#
### Load libraries
list.of.packages <- c("pls","dplyr","here","plotrix","ggplot2","gridExtra","spectratrait")
invisible(lapply(list.of.packages, library, character.only = TRUE))
#--------------------------------------------------------------------------------------------------#
#--------------------------------------------------------------------------------------------------#
### Setup other functions and options
# not in
`%notin%` <- Negate(`%in%`)
# Script options
pls::pls.options(plsralg = "oscorespls")
pls::pls.options("plsralg")
# Default par options
opar <- par(no.readonly = T)
# What is the target variable?
inVar <- "Narea_g_m2"
# What is the source dataset from EcoSIS?
ecosis_id <- "9db4c5a2-7eac-4e1e-8859-009233648e89"
# Specify output directory, output_dir
# Options:
# tempdir - use a OS-specified temporary directory
# user defined PATH - e.g. "~/scratch/PLSR"
output_dir <- "tempdir"
#--------------------------------------------------------------------------------------------------#
#--------------------------------------------------------------------------------------------------#
### Set working directory
if (output_dir=="tempdir") {
outdir <- tempdir()
} else {
if (! file.exists(output_dir)) dir.create(output_dir,recursive=TRUE)
outdir <- file.path(path.expand(output_dir))
}
setwd(outdir) # set working directory
getwd() # check wd
#--------------------------------------------------------------------------------------------------#
#--------------------------------------------------------------------------------------------------#
### Get source dataset from EcoSIS
dat_raw <- spectratrait::get_ecosis_data(ecosis_id = ecosis_id)
head(dat_raw)
names(dat_raw)[1:40]
#--------------------------------------------------------------------------------------------------#
#--------------------------------------------------------------------------------------------------#
### Create plsr dataset
Start.wave <- 500
End.wave <- 2400
wv <- seq(Start.wave,End.wave,1)
Spectra <- as.matrix(dat_raw[,names(dat_raw) %in% wv])
colnames(Spectra) <- c(paste0("Wave_",wv))
head(Spectra)[1:6,1:10]
sample_info <- dat_raw[,names(dat_raw) %notin% seq(350,2500,1)]
head(sample_info)
sample_info2 <- sample_info %>%
select(Plant_Species=`Latin Species`,Species_Code=`species code`,Plot=`plot code`,
Narea_mg_mm2=`Leaf nitrogen content per leaf area (mg/mm2)`)
sample_info2 <- sample_info2 %>%
# mutate(Narea_g_m2=Narea_mg_mm2*(0.001/1e-6)) # based on orig units should be this but conversion wrong
mutate(Narea_g_m2=Narea_mg_mm2*100) # this assumes orig units were g/mm2 or mg/cm2
head(sample_info2)
plsr_data <- data.frame(sample_info2,Spectra)
rm(sample_info,sample_info2,Spectra)
#--------------------------------------------------------------------------------------------------#
#--------------------------------------------------------------------------------------------------#
#### Example data cleaning. End user needs to do what's appropriate for their
#### data. This may be an iterative process.
# Keep only complete rows of inVar and spec data before fitting
plsr_data <- plsr_data[complete.cases(plsr_data[,names(plsr_data) %in%
c(inVar,paste0("Wave_",wv))]),]
#--------------------------------------------------------------------------------------------------#
#--------------------------------------------------------------------------------------------------#
### Create cal/val datasets
## Make a stratified random sampling in the strata USDA_Species_Code and Domain
method <- "dplyr" #base/dplyr
# base R - a bit slow
# dplyr - much faster
split_data <- spectratrait::create_data_split(dataset=plsr_data, approach=method, split_seed=1245565,
prop=0.8, group_variables="Species_Code")
names(split_data)
cal.plsr.data <- split_data$cal_data
head(cal.plsr.data)[1:8]
val.plsr.data <- split_data$val_data
head(val.plsr.data)[1:8]
rm(split_data)
# Datasets:
print(paste("Cal observations: ",dim(cal.plsr.data)[1],sep=""))
print(paste("Val observations: ",dim(val.plsr.data)[1],sep=""))
cal_hist_plot <- ggplot(data = cal.plsr.data,
aes(x = cal.plsr.data[,paste0(inVar)])) +
geom_histogram(fill=I("grey50"),col=I("black"),alpha=I(.7)) +
labs(title=paste0("Calibration Histogram for ",inVar), x = paste0(inVar),
y = "Count")
val_hist_plot <- ggplot(data = val.plsr.data,
aes(x = val.plsr.data[,paste0(inVar)])) +
geom_histogram(fill=I("grey50"),col=I("black"),alpha=I(.7)) +
labs(title=paste0("Validation Histogram for ",inVar), x = paste0(inVar),
y = "Count")
histograms <- grid.arrange(cal_hist_plot, val_hist_plot, ncol=2)
ggsave(filename = file.path(outdir,paste0(inVar,"_Cal_Val_Histograms.png")), plot = histograms,
device="png", width = 30,
height = 12, units = "cm",
dpi = 300)
# output cal/val data
write.csv(cal.plsr.data,file=file.path(outdir,paste0(inVar,'_Cal_PLSR_Dataset.csv')),
row.names=FALSE)
write.csv(val.plsr.data,file=file.path(outdir,paste0(inVar,'_Val_PLSR_Dataset.csv')),
row.names=FALSE)
#--------------------------------------------------------------------------------------------------#
#--------------------------------------------------------------------------------------------------#
### Format PLSR data for model fitting
cal_spec <- as.matrix(cal.plsr.data[, which(names(cal.plsr.data) %in% paste0("Wave_",wv))])
cal.plsr.data <- data.frame(cal.plsr.data[, which(names(cal.plsr.data) %notin% paste0("Wave_",wv))],
Spectra=I(cal_spec))
head(cal.plsr.data)[1:5]
val_spec <- as.matrix(val.plsr.data[, which(names(val.plsr.data) %in% paste0("Wave_",wv))])
val.plsr.data <- data.frame(val.plsr.data[, which(names(val.plsr.data) %notin% paste0("Wave_",wv))],
Spectra=I(val_spec))
head(val.plsr.data)[1:5]
#--------------------------------------------------------------------------------------------------#
#--------------------------------------------------------------------------------------------------#
### plot cal and val spectra
par(mfrow=c(1,2)) # B, L, T, R
spectratrait::f.plot.spec(Z=cal.plsr.data$Spectra,wv=seq(Start.wave,End.wave,1),plot_label="Calibration")
spectratrait::f.plot.spec(Z=val.plsr.data$Spectra,wv=seq(Start.wave,End.wave,1),plot_label="Validation")
dev.copy(png,file.path(outdir,paste0(inVar,'_Cal_Val_Spectra.png')),
height=2500,width=4900, res=340)
dev.off();
par(mfrow=c(1,1))
#--------------------------------------------------------------------------------------------------#
#--------------------------------------------------------------------------------------------------#
### Use permutation to determine the optimal number of components
if(grepl("Windows", sessionInfo()$running)){
pls.options(parallel = NULL)
} else {
pls.options(parallel = parallel::detectCores()-1)
}
method <- "pls" #pls, firstPlateau, firstMin
random_seed <- 1245565
seg <- 50
maxComps <- 16
iterations <- 80
prop <- 0.70
if (method=="pls") {
nComps <- spectratrait::find_optimal_components(dataset=cal.plsr.data, targetVariable=inVar,
method=method,
maxComps=maxComps, seg=seg,
random_seed=random_seed)
print(paste0("*** Optimal number of components: ", nComps))
} else {
nComps <- spectratrait::find_optimal_components(dataset=cal.plsr.data, targetVariable=inVar,
method=method,
maxComps=maxComps, iterations=iterations,
seg=seg, prop=prop,
random_seed=random_seed)
}
dev.copy(png,file.path(outdir,paste0(paste0(inVar,"_PLSR_Component_Selection.png"))),
height=2800, width=3400, res=340)
dev.off();
#--------------------------------------------------------------------------------------------------#
#--------------------------------------------------------------------------------------------------#
### Fit final model - using leave-one-out cross validation
plsr.out <- plsr(as.formula(paste(inVar,"~","Spectra")),scale=FALSE,ncomp=nComps,validation="LOO",
trace=FALSE,data=cal.plsr.data)
fit <- plsr.out$fitted.values[,1,nComps]
pls.options(parallel = NULL)
# External validation fit stats
par(mfrow=c(1,2)) # B, L, T, R
pls::RMSEP(plsr.out, newdata = val.plsr.data)
plot(pls::RMSEP(plsr.out,estimate=c("test"),newdata = val.plsr.data), main="MODEL RMSEP",
xlab="Number of Components",ylab="Model Validation RMSEP",lty=1,col="black",cex=1.5,lwd=2)
box(lwd=2.2)
pls::R2(plsr.out, newdata = val.plsr.data)
plot(pls::R2(plsr.out,estimate=c("test"),newdata = val.plsr.data), main="MODEL R2",
xlab="Number of Components",ylab="Model Validation R2",lty=1,col="black",cex=1.5,lwd=2)
box(lwd=2.2)
dev.copy(png,file.path(outdir,paste0(paste0(inVar,"_Validation_RMSEP_R2_by_Component.png"))),
height=2800, width=4800, res=340)
dev.off();
par(opar)
#--------------------------------------------------------------------------------------------------#
#--------------------------------------------------------------------------------------------------#
### PLSR fit observed vs. predicted plot data
#calibration
cal.plsr.output <- data.frame(cal.plsr.data[, which(names(cal.plsr.data) %notin% "Spectra")],
PLSR_Predicted=fit,
PLSR_CV_Predicted=as.vector(plsr.out$validation$pred[,,nComps]))
cal.plsr.output <- cal.plsr.output %>%
mutate(PLSR_CV_Residuals = PLSR_CV_Predicted-get(inVar))
head(cal.plsr.output)
cal.R2 <- round(pls::R2(plsr.out, intercept=F)[[1]][nComps],2)
cal.RMSEP <- round(sqrt(mean(cal.plsr.output$PLSR_CV_Residuals^2)),2)
val.plsr.output <- data.frame(val.plsr.data[, which(names(val.plsr.data) %notin% "Spectra")],
PLSR_Predicted=as.vector(predict(plsr.out,
newdata = val.plsr.data,
ncomp=nComps, type="response")[,,1]))
val.plsr.output <- val.plsr.output %>%
mutate(PLSR_Residuals = PLSR_Predicted-get(inVar))
head(val.plsr.output)
val.R2 <- round(pls::R2(plsr.out,newdata=val.plsr.data, intercept=F)[[1]][nComps],2)
val.RMSEP <- round(sqrt(mean(val.plsr.output$PLSR_Residuals^2)),2)
rng_quant <- quantile(cal.plsr.output[,inVar], probs = c(0.001, 0.999))
cal_scatter_plot <- ggplot(cal.plsr.output, aes(x=PLSR_CV_Predicted, y=get(inVar))) +
theme_bw() + geom_point() + geom_abline(intercept = 0, slope = 1, color="dark grey",
linetype="dashed", linewidth=1.5) +
xlim(rng_quant[1], rng_quant[2]) +
ylim(rng_quant[1], rng_quant[2]) +
labs(x=paste0("Predicted ", paste(inVar), " (units)"),
y=paste0("Observed ", paste(inVar), " (units)"),
title=paste0("Calibration: ", paste0("Rsq = ", cal.R2), "; ", paste0("RMSEP = ",
cal.RMSEP))) +
theme(axis.text=element_text(size=18), legend.position="none",
axis.title=element_text(size=20, face="bold"),
axis.text.x = element_text(angle = 0,vjust = 0.5),
panel.border = element_rect(linetype = "solid", fill = NA, linewidth=1.5))
cal_resid_histogram <- ggplot(cal.plsr.output, aes(x=PLSR_CV_Residuals)) +
geom_histogram(alpha=.5, position="identity") +
geom_vline(xintercept = 0, color="black",
linetype="dashed", linewidth=1) + theme_bw() +
theme(axis.text=element_text(size=18), legend.position="none",
axis.title=element_text(size=20, face="bold"),
axis.text.x = element_text(angle = 0,vjust = 0.5),
panel.border = element_rect(linetype = "solid", fill = NA, linewidth=1.5))
rng_quant <- quantile(val.plsr.output[,inVar], probs = c(0.001, 0.999))
val_scatter_plot <- ggplot(val.plsr.output, aes(x=PLSR_Predicted, y=get(inVar))) +
theme_bw() + geom_point() + geom_abline(intercept = 0, slope = 1, color="dark grey",
linetype="dashed", linewidth=1.5) +
xlim(rng_quant[1], rng_quant[2]) +
ylim(rng_quant[1], rng_quant[2]) +
labs(x=paste0("Predicted ", paste(inVar), " (units)"),
y=paste0("Observed ", paste(inVar), " (units)"),
title=paste0("Validation: ", paste0("Rsq = ", val.R2), "; ", paste0("RMSEP = ",
val.RMSEP))) +
theme(axis.text=element_text(size=18), legend.position="none",
axis.title=element_text(size=20, face="bold"),
axis.text.x = element_text(angle = 0,vjust = 0.5),
panel.border = element_rect(linetype = "solid", fill = NA, linewidth=1.5))
val_resid_histogram <- ggplot(val.plsr.output, aes(x=PLSR_Residuals)) +
geom_histogram(alpha=.5, position="identity") +
geom_vline(xintercept = 0, color="black",
linetype="dashed", linewidth=1) + theme_bw() +
theme(axis.text=element_text(size=18), legend.position="none",
axis.title=element_text(size=20, face="bold"),
axis.text.x = element_text(angle = 0,vjust = 0.5),
panel.border = element_rect(linetype = "solid", fill = NA, linewidth=1.5))
# plot cal/val side-by-side
scatterplots <- grid.arrange(cal_scatter_plot, val_scatter_plot, cal_resid_histogram,
val_resid_histogram, nrow=2,ncol=2)
ggsave(filename = file.path(outdir,paste0(inVar,"_Cal_Val_Scatterplots.png")),
plot = scatterplots, device="png", width = 32, height = 30, units = "cm",
dpi = 300)
#--------------------------------------------------------------------------------------------------#
#--------------------------------------------------------------------------------------------------#
### Generate Coefficient and VIP plots
vips <- spectratrait::VIP(plsr.out)[nComps,]
par(mfrow=c(2,1))
plot(plsr.out$coefficients[,,nComps], x=wv,xlab="Wavelength (nm)",
ylab="Regression coefficients",lwd=2,type='l')
box(lwd=2.2)
plot(seq(Start.wave,End.wave,1),vips,xlab="Wavelength (nm)",ylab="VIP",cex=0.01)
lines(seq(Start.wave,End.wave,1),vips,lwd=3)
abline(h=0.8,lty=2,col="dark grey")
box(lwd=2.2)
dev.copy(png,file.path(outdir,paste0(inVar,'_Coefficient_VIP_plot.png')),
height=3100, width=4100, res=340)
dev.off();
par(opar)
#--------------------------------------------------------------------------------------------------#
#--------------------------------------------------------------------------------------------------#
if(grepl("Windows", sessionInfo()$running)){
pls.options(parallel =NULL)
} else {
pls.options(parallel = parallel::detectCores()-1)
}
jk.plsr.out <- pls::plsr(as.formula(paste(inVar,"~","Spectra")), scale=FALSE,
center=TRUE, ncomp=nComps, validation="LOO", trace=FALSE,
jackknife=TRUE,
data=cal.plsr.data)
pls.options(parallel = NULL)
Jackknife_coef <- spectratrait::f.coef.valid(plsr.out = jk.plsr.out, data_plsr = cal.plsr.data,
ncomp = nComps, inVar=inVar)
Jackknife_intercept <- Jackknife_coef[1,,,]
Jackknife_coef <- Jackknife_coef[2:dim(Jackknife_coef)[1],,,]
interval <- c(0.025,0.975)
Jackknife_Pred <- val.plsr.data$Spectra %*% Jackknife_coef +
matrix(rep(Jackknife_intercept, length(val.plsr.data[,inVar])), byrow=TRUE,
ncol=length(Jackknife_intercept))
Interval_Conf <- apply(X = Jackknife_Pred, MARGIN = 1, FUN = quantile,
probs=c(interval[1], interval[2]))
sd_mean <- apply(X = Jackknife_Pred, MARGIN = 1, FUN =sd)
sd_res <- sd(val.plsr.output$PLSR_Residuals)
sd_tot <- sqrt(sd_mean^2+sd_res^2)
val.plsr.output$LCI <- Interval_Conf[1,]
val.plsr.output$UCI <- Interval_Conf[2,]
val.plsr.output$LPI <- val.plsr.output$PLSR_Predicted-1.96*sd_tot
val.plsr.output$UPI <- val.plsr.output$PLSR_Predicted+1.96*sd_tot
head(val.plsr.output)
# JK regression coefficient plot
spectratrait::f.plot.coef(Z = t(Jackknife_coef), wv = seq(Start.wave,End.wave,1),
plot_label="Jackknife regression coefficients",position = 'bottomleft')
abline(h=0,lty=2,col="grey50")
box(lwd=2.2)
dev.copy(png,file.path(outdir,paste0(inVar,'_Jackknife_Regression_Coefficients.png')),
height=2100, width=3800, res=340)
dev.off();
# JK validation plot
rmsep_percrmsep <- spectratrait::percent_rmse(plsr_dataset = val.plsr.output,
inVar = inVar,
residuals = val.plsr.output$PLSR_Residuals,
range="full")
RMSEP <- rmsep_percrmsep$rmse
perc_RMSEP <- rmsep_percrmsep$perc_rmse
r2 <- round(pls::R2(plsr.out, newdata = val.plsr.data, intercept=F)$val[nComps],2)
expr <- vector("expression", 3)
expr[[1]] <- bquote(R^2==.(r2))
expr[[2]] <- bquote(RMSEP==.(round(RMSEP,2)))
expr[[3]] <- bquote("%RMSEP"==.(round(perc_RMSEP,2)))
rng_vals <- c(min(val.plsr.output$LPI), max(val.plsr.output$UPI))
par(mfrow=c(1,1), mar=c(4.2,5.3,1,0.4), oma=c(0, 0.1, 0, 0.2))
plotrix::plotCI(val.plsr.output$PLSR_Predicted,val.plsr.output[,inVar],
li=val.plsr.output$LPI, ui=val.plsr.output$UPI, gap=0.009,sfrac=0.004,
lwd=1.6, xlim=c(rng_vals[1], rng_vals[2]), ylim=c(rng_vals[1], rng_vals[2]),
err="x", pch=21, col="black", pt.bg=scales::alpha("grey70",0.7), scol="grey50",
cex=2, xlab=paste0("Predicted ", paste(inVar), " (units)"),
ylab=paste0("Observed ", paste(inVar), " (units)"),
cex.axis=1.5,cex.lab=1.8)
abline(0,1,lty=2,lw=2)
legend("topleft", legend=expr, bty="n", cex=1.5)
box(lwd=2.2)
dev.copy(png,file.path(outdir,paste0(inVar,"_PLSR_Validation_Scatterplot.png")),
height=2800, width=3200, res=340)
dev.off();
#--------------------------------------------------------------------------------------------------#
#---------------- Output jackknife results --------------------------------------------------------#
# JK Coefficents
out.jk.coefs <- data.frame(Iteration=seq(1,length(Jackknife_intercept),1),
Intercept=Jackknife_intercept,t(Jackknife_coef))
head(out.jk.coefs)[1:6]
write.csv(out.jk.coefs,file=file.path(outdir,paste0(inVar,'_Jackkife_PLSR_Coefficients.csv')),
row.names=FALSE)
#--------------------------------------------------------------------------------------------------#
#---------------- Export Model Output -------------------------------------------------------------#
print(paste("Output directory: ", getwd()))
# Observed versus predicted
write.csv(cal.plsr.output,file=file.path(outdir,paste0(inVar,'_Observed_PLSR_CV_Pred_',nComps,
'comp.csv')),row.names=FALSE)
# Validation data
write.csv(val.plsr.output,file=file.path(outdir,paste0(inVar,'_Validation_PLSR_Pred_',nComps,
'comp.csv')),row.names=FALSE)
# Model coefficients
coefs <- coef(plsr.out,ncomp=nComps,intercept=TRUE)
write.csv(coefs,file=file.path(outdir,paste0(inVar,'_PLSR_Coefficients_',nComps,'comp.csv')),
row.names=TRUE)
# PLSR VIP
write.csv(vips,file=file.path(outdir,paste0(inVar,'_PLSR_VIPs_',nComps,'comp.csv')))
# confirm files were written to temp space
print("**** PLSR output files: ")
print(list.files(getwd())[grep(pattern = inVar, list.files(getwd()))])
#--------------------------------------------------------------------------------------------------#
#--------------------------------------------------------------------------------------------------#
### EOF
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.