### Exponential-squared correlation function
test_that("correlation with self is 1", {
expect_equal(
c(exp_sq(
data.frame(a = 1),
data.frame(a = 1),
list(theta = 0.1)
), use.names = FALSE),
1
)
expect_equal(
c(diag(exp_sq(
data.frame(a = c(1, 2, 3), b = c(0.1, 0.4, 0.3)),
data.frame(a = c(1, 2, 3), b = c(0.1, 0.4, 0.3)),
list(theta = 0.2)
)), use.names = FALSE),
rep(1, 3)
)
})
test_that("one-dimensional exp-squared; single point", {
expect_equal(
c(exp_sq(
data.frame(a = 1),
data.frame(a = 2),
list(theta = 0.1)
)),
3.720076e-44)
})
test_that("one-dimensional exp-squared; multi point", {
expect_equal(
exp_sq(
data.frame(a = c(1, 2)),
data.frame(a = c(1.1, 2.9)),
list(theta = 0.4)
),
matrix(c(9.394131e-01, 0.006329715, 1.589391e-10, 0.006329715),
nrow = 2, byrow = TRUE),
tolerance = 1e-7
)
})
test_that("multi-dimensional exp-squared; single point", {
expect_equal(
c(exp_sq(
data.frame(a = 1, b = 2, c = -1),
data.frame(a = 1.5, b = 2.9, c = -0.7),
list(theta = 0.2)
)),
3.266131e-13
)
})
test_that("multi-dimensional exp=squared; multi point", {
expect_equal(
exp_sq(
data.frame(a = c(1.9, 2.1, 3.4), b = c(0.1, -0.1, 0.4)),
data.frame(a = c(1.8, 2.4, 3.2), b = c(0.5, 0, -0.5)),
list(theta = 1)
),
matrix(
c(0.8436648, 0.6376282, 0.07653555,
0.7710516, 0.9048374, 0.31348618,
0.1287349, 0.2541070, 0.42741493),
nrow = 3, byrow = TRUE
),
tolerance = 1e-7
)
})
test_that("dimensionality checks", {
expect_equal(
dim(exp_sq(
data.frame(a = c(1.9, 2.1, 3.4), b = c(0.1, -0.1, 0.4)),
data.frame(a = c(1.8, 2.4), b = c(0.5, 0)),
list(theta = 1)
)),
c(2,3)
)
expect_equal(
dim(exp_sq(
data.frame(a = c(1.8), b = c(0.5)),
data.frame(a = c(1.9, 2.1, 3.4), b = c(0.1, -0.1, 0.4)),
list(theta = 1)
)),
c(3,1)
)
expect_equal(
dim(exp_sq(
data.frame(a = c(1.9, 2.1, 3.4), b = c(0.1, -0.1, 0.4)),
data.frame(a = c(1.8), b = c(0.5)),
list(theta = 1)
)),
c(1,3)
)
})
test_that("different theta per dimension", {
expect_equal(
exp_sq(
data.frame(a = c(1.9, 2.1, 3.4), b = c(0.1, -0.1, 0.4)),
data.frame(a = c(1.8, 2.4, 3.2), b = c(0.5, 0, -0.5)),
list(theta = c(1, 0.5))
),
matrix(
c(0.5220457768, 0.2165356706, 0.07427355,
0.7482634867, 0.8780953273, 0.19398003,
0.0437177889, 0.1572370864, 0.03762826),
nrow = 3, byrow = TRUE
),
tolerance = 1e-6
)
})
test_that("same points gives symmetric matrix", {
corr_out <- exp_sq(
data.frame(a = c(1.9, 2.1, 3.4), b = c(0.1, -0.1, 0.4)),
data.frame(a = c(1.9, 2.1, 3.4), b = c(0.1, -0.1, 0.4)),
list(theta = 0.2)
)
expect_equal(
corr_out,
t(corr_out)
)
})
test_that("fails with no theta", {
expect_error(
exp_sq(
data.frame(a = c(1.9, 2.1, 3.4), b = c(0.1, -0.1, 0.4)),
data.frame(a = c(1.9, 2.1, 3.4), b = c(0.1, -0.1, 0.4))
)
)
})
test_that("fails with missing data.frame", {
expect_error(
exp_sq(
data.frame(a = c(1.9, 2.1, 3.4), b = c(0.1, -0.1, 0.4)),
hp = list(theta = 0.1)
)
)
})
test_that("works with data.matrix or data.frame", {
df <- data.frame(a = c(1.9, 2.1, 3.4), b = c(0.1, -0.1, 0.4))
dm <- data.matrix(df)
expect_equal(
exp_sq(df, df, list(theta = 0.2)),
exp_sq(dm, dm, list(theta = 0.2))
)
})
## Derivative of exponential-squared correlation function
test_that("correlation with self is 0", {
expect_equal(
unname(exp_sq_d(
data.matrix(data.frame(a = 1)),
data.matrix(data.frame(a = 1)),
list(theta = 0.1),
1
)),
matrix(0, nrow = 1)
)
expect_equal(
c(diag(exp_sq_d(
data.matrix(data.frame(a = c(1, 2, 3), b = c(0.1, 0.4, 0.3))),
data.matrix(data.frame(a = c(1, 2, 3), b = c(0.1, 0.4, 0.3))),
list(theta = 0.2),
2
)), use.names = FALSE),
rep(0, 3)
)
})
test_that("one-dimensional exp-squared derivative; single point", {
expect_equal(
exp_sq_d(
data.matrix(data.frame(a = 1)),
data.matrix(data.frame(a = 2)),
list(theta = 0.1),
1
),
matrix(7.440152e-42, nrow = 1))
})
test_that("one-dimensional exp-squared derivative; multi point", {
expect_equal(
exp_sq_d(
data.matrix(data.frame(a = c(1, 2))),
data.matrix(data.frame(a = c(1.1, 2.9))),
list(theta = 0.4),
1
),
matrix(c(1.174266, -0.0712093, 3.774804e-09, 0.0712093),
nrow = 2, byrow = TRUE),
tolerance = 1e-6
)
})
test_that("multi-dimensional exp-squared derivative; single point", {
expect_equal(
exp_sq_d(
data.matrix(data.frame(a = 1, b = 2, c = -1)),
data.matrix(data.frame(a = 1.5, b = 2.9, c = -0.7)),
list(theta = 0.2),
3
),
matrix(4.899197e-12, nrow = 1)
)
})
test_that("multi-dimensional exp-squared derivative; single point and multi-deriv", {
expect_equal(
exp_sq_d(
data.matrix(data.frame(a = 1, b = 2, c = -1)),
data.matrix(data.frame(a = 1.5, b = 2.9, c = -0.7)),
list(theta = 0.2),
3,
2
),
matrix(-2.204639e-10, nrow = 1)
)
})
test_that("multi-dimensional exp-squared derivative; multi point and multi deriv", {
expect_equal(
exp_sq_d(
data.matrix(data.frame(a = c(1.9, 2.1, 3.4), b = c(0.1, -0.1, 0.4))),
data.matrix(data.frame(a = c(1.8, 2.4, 3.2), b = c(0.5, 0, -0.5))),
list(theta = 1),
1,
2
),
matrix(
c(0.1349864, 0.4590923, 0.04898275,
0.1542103, -0.1085805, -0.50157789,
0.4016529, 0.4472282, -0.30773875),
nrow = 3, byrow = TRUE
),
tolerance = 1e-7
)
})
test_that("fails with no derivative direction", {
expect_error(
exp_sq_d(
data.frame(a = c(1.9, 2.1, 3.4), b = c(0.1, -0.1, 0.4)),
data.frame(a = c(1.9, 2.1, 3.4), b = c(0.1, -0.1, 0.4))
)
)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.