### Rational Quadratic correlation function
test_that("correlation with self is 1", {
expect_equal(
c(rat_quad(
data.frame(a = 1),
data.frame(a = 1),
list(theta = 0.1, alpha = 1.5)
), use.names = FALSE),
1
)
expect_equal(
unname(diag(rat_quad(
data.frame(a = c(1, 2, 3), b = c(0.1, 0.4, 0.3)),
data.frame(a = c(1, 2, 3), b = c(0.1, 0.4, 0.3)),
list(theta = 0.2, alpha = 1.5)
))),
rep(1, 3)
)
})
test_that("one-dimensional rational quadratic; single point", {
expect_equal(
c(rat_quad(
data.frame(a = 1),
data.frame(a = 2),
list(theta = 0.1, alpha = 2.5)
), use.names = FALSE),
0.00049482515)
})
test_that("one-dimensional rational quadratic; multi point", {
expect_equal(
rat_quad(
data.frame(a = c(1, 2)),
data.frame(a = c(1.1, 2.9)),
list(theta = 0.4, alpha = 2.5)
),
matrix(c(0.96942099, 0.1740445, 0.01401614, 0.1740445),
nrow = 2, byrow = TRUE),
tolerance = 1e-7
)
})
test_that("multi-dimensional rational quadratic; single point", {
expect_equal(
c(rat_quad(
data.frame(a = 1, b = 2, c = -1),
data.frame(a = 1.5, b = 2.9, c = -0.7),
list(theta = 0.2, alpha = 0.5)
), use.names = FALSE),
0.1833397,
tolerance = 1e-6
)
})
test_that("multi-dimensional rational quadratic; multi point", {
expect_equal(
rat_quad(
data.frame(a = c(1.9, 2.1, 3.4), b = c(0.1, -0.1, 0.4)),
data.frame(a = c(1.8, 2.4, 3.2), b = c(0.5, 0, -0.5)),
list(theta = 1, alpha = 1.5)
),
matrix(
c(0.9206467, 0.8108737, 0.3952748,
0.8827861, 0.9520052, 0.6124095,
0.4578728, 0.5688002, 0.6878453),
nrow = 3, byrow = TRUE
),
tolerance = 1e-7
)
})
test_that("dimensionality checks", {
expect_equal(
dim(rat_quad(
data.frame(a = c(1.9, 2.1, 3.4), b = c(0.1, -0.1, 0.4)),
data.frame(a = c(1.8, 2.4), b = c(0.5, 0)),
list(theta = 1, alpha = 1.5)
)),
c(2,3)
)
expect_equal(
dim(rat_quad(
data.frame(a = c(1.8), b = c(0.5)),
data.frame(a = c(1.9, 2.1, 3.4), b = c(0.1, -0.1, 0.4)),
list(theta = 1, alpha = 1.5)
)),
c(3,1)
)
expect_equal(
dim(rat_quad(
data.frame(a = c(1.9, 2.1, 3.4), b = c(0.1, -0.1, 0.4)),
data.frame(a = c(1.8), b = c(0.5)),
list(theta = 1, alpha = 2.5)
)),
c(1,3)
)
})
test_that("same points gives symmetric matrix", {
corr_out <- rat_quad(
data.frame(a = c(1.9, 2.1, 3.4), b = c(0.1, -0.1, 0.4)),
data.frame(a = c(1.9, 2.1, 3.4), b = c(0.1, -0.1, 0.4)),
list(theta = 0.2, alpha = 1.5)
)
expect_equal(
corr_out,
t(corr_out)
)
})
test_that("fails with no theta", {
expect_error(
rat_quad(
data.frame(a = c(1.9, 2.1, 3.4), b = c(0.1, -0.1, 0.4)),
data.frame(a = c(1.9, 2.1, 3.4), b = c(0.1, -0.1, 0.4)),
list(alpha = 1.5)
)
)
})
test_that("fails with no alpha", {
expect_error(
rat_quad(
data.frame(a = c(1.9, 2.1, 3.4), b = c(0.1, -0.1, 0.4)),
data.frame(a = c(1.9, 2.1, 3.4), b = c(0.1, -0.1, 0.4)),
list(theta = 0.8)
)
)
})
test_that("fails with missing data.frame", {
expect_error(
rat_quad(
data.frame(a = c(1.9, 2.1, 3.4), b = c(0.1, -0.1, 0.4)),
hp = list(theta = 0.1, alpha = 1.5)
)
)
})
test_that("works with data.matrix or data.frame", {
df <- data.frame(a = c(1.9, 2.1, 3.4), b = c(0.1, -0.1, 0.4))
dm <- data.matrix(df)
expect_equal(
rat_quad(df, df, list(theta = 0.2, alpha = 1.5)),
rat_quad(dm, dm, list(theta = 0.2, alpha = 1.5))
)
})
## Derivative of rat_quad correlation function
test_that("correlation with self is 0", {
expect_equal(
unname(rat_quad_d(
data.matrix(data.frame(a = 1)),
data.matrix(data.frame(a = 1)),
list(theta = 0.1, alpha = 1.5),
1
)),
matrix(0, nrow = 1)
)
expect_equal(
unname(diag(rat_quad_d(
data.matrix(data.frame(a = c(1, 2, 3), b = c(0.1, 0.4, 0.3))),
data.matrix(data.frame(a = c(1, 2, 3), b = c(0.1, 0.4, 0.3))),
list(theta = 0.2, alpha = 1.5),
2
))),
rep(0, 3)
)
})
test_that("one-dimensional rational quadratic derivative; single point", {
expect_equal(
rat_quad_d(
data.matrix(data.frame(a = 1)),
data.matrix(data.frame(a = 2)),
list(theta = 0.1, alpha = 1.5),
1
),
matrix(-0.01447805, nrow = 1))
})
test_that("one-dimensional rational quadratic derivative; multi point", {
expect_equal(
rat_quad_d(
data.matrix(data.frame(a = c(1, 2))),
data.matrix(data.frame(a = c(1.1, 2.9))),
list(theta = 0.4, alpha = 2.5),
1
),
matrix(c(-0.5984080, 0.4864598, -0.0301935, -0.4864598),
nrow = 2, byrow = TRUE),
tolerance = 1e-6
)
})
test_that("multi-dimensional rational quadratic derivative; single point", {
expect_equal(
rat_quad_d(
data.matrix(data.frame(a = 1, b = 2, c = -1)),
data.matrix(data.frame(a = 1.5, b = 2.9, c = -0.7)),
list(theta = 0.2, alpha = 1.5),
3
),
matrix(-0.0205828295, nrow = 1),
tolerance = 1e-6
)
})
test_that("multi-dimensional rational quadratic derivative; multi point and multi deriv", {
expect_equal(
rat_quad_d(
data.matrix(data.frame(a = c(1.9, 2.1, 3.4), b = c(0.1, -0.1, 0.4))),
data.matrix(data.frame(a = c(1.8, 2.4, 3.2), b = c(0.5, 0, -0.5))),
list(theta = 1, alpha = 2.5),
1,
2
),
matrix(
c(0.04817765, 0.17099417, 0.03464827,
0.05572207, -0.03841922, -0.21899785,
0.23266799, 0.20716591, -0.12432663),
nrow = 3, byrow = TRUE
),
tolerance = 1e-7
)
})
test_that("fails with no derivative direction", {
expect_error(
rat_quad_d(
data.frame(a = c(1.9, 2.1, 3.4), b = c(0.1, -0.1, 0.4)),
data.frame(a = c(1.9, 2.1, 3.4), b = c(0.1, -0.1, 0.4))
)
)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.